
Chapter 3

Development of Adaptive Web Applications: State
of the Art

“If you wish your merit to be known, acknowledge that of other people.”1

The previous chapter gave a short introduction to adaptive hypermedia and Web-based
systems. Basic definitions were stated, and reference models for adaptive hypermedia applica-
tions were presented. Furthermore, the most important methods, techniques, and application
areas of hypermedia and Web adaptation were summarized.

The continually increasing complexity of Web sites, the heterogeneity of their audience,
and the growing diversity of available Web client devices make adaptation (to the user, his de-
vice, and entire usage context) to a crucial issue of today’s Web-based systems. Nevertheless,
this need for adaptation leads to additional requirements towards the anyhow complex devel-
opment process of Web applications. As stated in Chapter 1, these additional requirements
concern all phases of a Web application’s life cycle: design, implementation, publication,
testing, maintenance, etc. Hence, it becomes obvious that the development of adaptive Web-
based systems needs to be based on systematic engineering approaches that allow to take
into account personalization and device independence in a structured manner.

Whereas the development of early Web sites was characterized by ad hoc approaches, in
the last decade new initiatives have been undertaken to address the complexity and problems
involved in creating and maintaining Web-based systems. Since about 2000, one can talk
about a new Web engineering discipline. The term Web engineering itself is defined by
Murugesan et al. in [Murugesan et al. 2001] as follows:

Definition 3.1 (Web Engineering) “Web engineering is the establishment and use of
sound scientific, engineering and management principles and disciplined and systematic ap-
proaches to the successful development, deployment and maintenance of high quality Web-
based systems and applications.”

Web engineering is a multidisciplinary field that encompasses inputs from diverse areas
such as software engineering, human-computer interaction, user interface design, requirements
engineering, systems analysis and design, hypermedia or multimedia [Deshpande et al. 2002].
It addresses numerous aspects of Web application development and management, among them
design methods and methodologies; implementation techniques; usability issues; testing, ver-
ification and validation; performance specification and analysis; update and maintenance
etc [Murugesan and Deshpande 2001]. Furthermore, triggered by the above mentioned need

1Oriental proverb

39

Chapter 3. Development of Adaptive Web Applications: State of the Art

for personalization and device/context dependency, an increasing amount of research is de-
voted to adaptation engineering , as well.

The goal of this chapter is to provide an overview of (a well-defined subset of) existing
Web engineering approaches aimed at the development of adaptive Web applications. It is
basically divided into two main parts: one (Section 3.2) summarizing component-based and
document-centric Web engineering approaches, the other (Section 3.3) focusing on model-
based Web or hypermedia design methods and methodologies. Yet, to appropriately situate
these topics (and thus the main focus of this dissertation) in the overall Web engineering
research field, Section 3.1 provides a short overview of the typical life-cycle of (adaptive)
Web applications.

3.1 Overview of the Overall Web Engineering Life-Cycle

As stated above, the development and maintenance of complex Web applications should be
based on systematic engineering processes and principles. Most typically, one can distinguish
between following process phases and related Web engineering activities [Kappel et al. 2004].

Requirements Analysis: Similar to traditional software engineering, the development of
a Web application typically starts with a requirements analysis. The corresponding
requirements engineering (RE) discipline covers all activities related to the ascertain-
ment, documentation, validation, and maintenance of requirements [Grünbacher 2003];
and involves all stakeholders (e.g. the providers, developers, but also the targeted users)
of the planned Web site. The gathered requirements might be both functional or non-
functional and address the application itself (e.g. supported user groups, the provided
content, or functionality), its systems environment (hardware or software components),
or even the entire project plan (deliverables, budget, etc.). They can be described in
different ways, such as in form of stories, storyboards, requirements lists, use cases, etc.

In contrast to conventional software systems, the requirements engineering for Web sites
is characterized by multidisciplinarity (i.e. the participation of different domain experts
like multimedia experts, content authors, database specialists, etc.), a larger importance
of quality factors (performance, security, usability, accessibility), and the need to con-
sider heterogeneous and dynamically changing deployment environments [Lowe 2003].
In the case of adaptive Web sites, this heterogeneity even increases since analysts have
to consider very different end devices, user groups, and usage contexts.

Design and Modeling: The requirements analysis phase is followed by the design of the
Web site, mostly based on a Web design method [Schwinger and Koch 2003]. Address-
ing different dimensions of the problem area, such methods allow specifying hypermedia
applications in an appropriate level of abstraction. Even though not (yet) widespread in
practice, the Web engineering research field has recently proposed a number of model-
based Web design methods2, the most important of which will be described in detail in
Section 3.3. As will be shown, they typically distinguish the data, the hypertext, and
the user interface aspects of a Web-based system.

2Note that throughout this dissertation (but also in general in the Web and software engineering fields), the
term “model” refers to different concepts, e.g. to reference models, component models, user models, context
models, design models, etc. To avoid confusion, the author aims to use the term by always explicitly naming
its particular context, as far as this is not unambiguously clear from the actual section or paragraph.

40 c© Copyright TU Dresden, Zoltán Fiala

3.1. Overview of the Overall Web Engineering Life-Cycle

When designing personalized ubiquitous Web applications, designers have to deal with
the additional aspect of contextuality . This requires a modeling of both different adapta-
tion targets (e.g. users, client devices, usage contexts) and the appropriate adaptation
processes in a high level of abstraction. However, the fact that hypermedia adap-
tation can concern all aspects of a Web site (content, navigation, presentation (see
Section 2.2.3)) implies a thorough reconsideration of (all models of) a “non-adaptive”
Web design.

Implementation: After specifying (designing) “what” functionality a Web-based system
should provide, the next question is “how” this should be implemented. Due to the
distributed nature and the recent rapid evolution of the WWW, there exists meanwhile
a huge number of different implementation techniques, among them document-centric
markup languages (e.g. HTML, WML, or other XML-based grammars), client-side
scripting and programming tools (plug-in technologies, applets, Java- or ActiveScript,
etc.), as well as server-side technologies (code-generators, database systems, applica-
tion frameworks)[Gaedke et al. 2003]. The realization of a complex Web application
requires not the application of one single technology, rather the combination of differ-
ent technologies within a comprehensive implementation framework. Furthermore, to
efficiently cope with complexity, there is a crucial need for implementation techniques
providing for “black-box-like” reuse and configurability of Web code artefacs both in
different implementation phases and on varying levels of granularity.

These aspects of reusability and configurability become even more important when re-
alizing adaptive Web applications. Instead of separately creating and managing content
and/or Web code for different client environments or possible user groups, there is a
need for “write-once-publish-everywhere” technologies enabling to create adaptable (or
even self-adaptive) implementation artefacts that can be (automatically) adjusted to
different application contexts. Thus, implementation technologies are required that
provide a clear separation of concerns (like content, layout, navigation, interaction be-
havior, etc.) in a reusable manner.

Test: The testing of a Web application has a crucial role in the overall Web site pro-
cess [Lam 2001]. It addresses both the functional and qualitative behavior of an appli-
cation, i.e. “a Web-based system needs to be tested not only to check and verify whether
it does what it is designed to do but also to evaluate how well it performs in (different)
Web client environments [Murugesan et al. 2001]”. Steindl et al. [Steindl et al. 2003]
distinguish between different dimensions of Web testing: 1) the dimension of quality
characteristics (e.g. usability, security, performance) to be tested, 2) the dimension of
system components (links, pages, server infrastructure components) to be investigated,
and 3) the phases of the overall Web engineering process (e.g. implementation, sys-
tem integration, deployment) that require test efforts. Meanwhile, there exists a broad
repertoire of test techniques and tools, ranging from link checker tools to complex stress
test frameworks for multi-tier Web architectures.

The testing of adaptive Web applications implies additional challenges compared to
non-adaptive Web sites. The first problem to be considered is the fact that their
behavior can significantly vary depending on the actual usage context. However, with
a growing number of context variables, the investigation of each test case for every
possible context configuration becomes soon unmanageable. Furthermore, it is also
nearly impossible to foresee all conceivable context configurations, e.g. the developers
of a device-independent Web site can not test it for every existing Web-capable end

c© Copyright TU Dresden, Zoltán Fiala 41

Chapter 3. Development of Adaptive Web Applications: State of the Art

device. A second problem is that the continuous acquisition and modeling of user,
usage, and context information causes additional server load, i.e. it can easily lead to
increasing response times and a worse system performance. Consequently, there is a
need for Web testing approaches that explicitly consider these additional requirements.

Operation and Maintenance: Once created, deployed, and tested, a Web application can
be launched and made accessible for its targeted audience. Yet, in contrast to tra-
ditional software applications, Web sites require continuous maintenance and updates
even in their operational phase [Deshpande et al. 2002]. Web maintenance comprises
a number of different activities, such as the advertisement of a Web application, the
steady observation and fine-tuning of its configuration (Web Configuration Manage-
ment [Dart 1999]), but first of all the continuous updating/refreshing of its content.
This latter aspect of Web Content Management (WCM [Fiala 2001]) is especially cru-
cial, since Web sites are in first place information systems, i.e. their popularity strongly
depends on the quality and actuality of the published content.

Like on all other engineering phases, the consideration of adaptation has additional im-
plications on Web maintenance. First, content creators (e.g. graphics designers, news
editors) have to prepare different versions of their content assets so that it optimally fits
the requirements of different user groups and client devices. Second, the evolutionary
nature of the Web also requires Web providers to continually “readjust or reconfigure”
even a running Web system to meet the characteristics of a newly emerged client de-
vice or a previously not considered usage context. Yet, apart from a few publications
(e.g. [Belotti et al. 2005]), this interplay of context-dependency and Web maintenance
has not been sufficiently addressed by academia, yet.

As can be seen, adaptation and personalization have a significant impact on the overall
life-cycle of a Web application. However, as a matter of course, this dissertation can only deal
with a small subset of the whole Web engineering process in detail. As stated in Chapter 1,
the central topic is the model-based design and component-based implementation of adaptive
Web sites. Therefore, this chapter consists of two parts: one reviewing component-based and
document-oriented Web engineering solutions, the other surveying model-based Web design
methods.

The component- and document-oriented approaches discussed in Section 3.2 are basically
centered around the implementation and presentation aspects of Web applications. Consider-
ing the document-centric nature of the Web (or in more general of hypertext and hypermedia
systems), they provide formalized (mostly XML-based) languages for efficiently creating and
publishing Web presentations. Hence abstracting from the current coarse-grained implemen-
tation model of the Web, they facilitate a number of benefits, such as reusability, configura-
bility, personalization, as well as platform and device independence. The documents created
in these languages typically represent Web implementation artefacts on different abstraction
levels (i.e. from atomic resources to complex Web presentations) and can be automatically
transformed to a specific Web or multimedia implementation format (e.g. (X)HTML, WML,
SMIL, X3D, etc.).

On the other hand, the model-based Web design methods described in Section 3.3 pursue
a complementary goal. Applying well-approved concepts, methods, and techniques of the
Model-Driven Software Engineering (MDE) paradigm to the particularities of Web-based
applications, they provide structured conceptual design methodologies that clearly separate
the different design issues involved in the design of Web applications [Costagliola et al. 2002].
All these different design issues are dealt with in separate design steps and are expressed as a

42 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

set of more or less formalized (design) models. Each of these models represents one concern
of the targeted application independent of the rest of the issues in a simplified and readable
form [Kappel et al. 2006]. This separation of design concerns facilitates a structured design
and development process. Furthermore, some approaches also enable to (semi-)automatically
generate an implementation for the targeted Web application based on its underlying design
models.

The rest of this chapter provides a detailed overview of the most important existing ap-
proaches from both fields. When reviewing these approaches, a main focus is on the question
of how they support different kinds of adaptation, such as personalization, ubiquity, or context
dependency.

3.2 Component-based and Document-oriented Approaches

3.2.1 WebComposition Component Model

There already exists some work on component-based Web engineering (CBWE). Gellersen
et al. discuss the problem of the coarse-grained implementation model of the Web and stress
the importance of utilizing a more fine-grained approach [Gellersen et al. 1997]. Especially,
they point out that there is a large gap between the fine granularity of existing design
models and the coarse granularity of the Web’s resource-based implementation artefacts
(e.g. HTML documents). As a consequence, a fundamental problem arises when the de-
sign of a Web application is deployed to an implementation of file-based Web resources,
not allowing for access the original design artefacts as entities anymore. To solve this
problem, they suggest a component-based approach called the WebComposition Component
Model [Gellersen et al. 1997].

WebComposition is based on an object-oriented model of Web software and aims at the
hierarchical decomposition of Web applications into components. These are reusable elements
defined on different abstraction levels. At a high level of abstraction a component might
model a Web page or even a Web site. Further down the hierarchy components can represent
fine-grained parts of pages, such as media elements, anchors, tables, etc. Whereas the leaves
in the resulting component hierarchy are called primitives, the other components are called
composites.

Components are defined by their states and behavior. The state of a component is de-
scribed by a number of properties, each represented by an attribute-value pair. Properties
can be referred to within any other property, thus allowing to express relationships (links)
between components. The behavior of a component is defined by operations on its state.
While component creators might define arbitrary operations, all components have to support
the operations setProperties, getProperties, and generateCode. The latter one specifies how
the state of a component can be mapped to its representation in the Web, for instance to
HTML code.

For the XML-based definition of components the XML-based WebComposition Markup
Language (WCML [Gaedke et al. 2000]) was introduced. Consequently, WCML documents
act as virtual component stores consisting of a set of component descriptions. A WCML
document is processed by the WCML compiler that maps the components described in that
document to the file-based Web implementation model of a specific target language. Thus,
the WCML compiler aims at analyzing the composition of components, resolving component
references, creating a Web presentation according to the components’ presentation behavior,
and at passing those pages to a Web server. For more information on WCML the reader is

c© Copyright TU Dresden, Zoltán Fiala 43

Chapter 3. Development of Adaptive Web Applications: State of the Art

referred to [Gaedke et al. 2000].
Based on the notion of components (that are defined by their properties, states, and

behavior), WebComposition utilizes a generic programming model, i.e. it does not prescribe
what types or classes of Web components may exist, how they should generate (parts of) Web
presentations, how their interfaces should look like, etc. Furthermore, it uses the prototype-
instance-model [Ungar and Smith 1987] for modeling inheritance, i.e. every component might
be used as a prototype for other components. This approach provides a simple and powerful
means for reuse and code sharing, but also results in lacking type safety. Furthermore, this
generic model also implies that developers have to take care of all important aspects of
their concrete components, such as their specification, validation, as well as their automatic
mapping to a concrete implementation provided by a specific Web document format.

As a generic model, the WebComposition approach allows to declare and create arbitrary
kinds of reusable Web components. In [Graef and Gaedke 2000] Graef and Gaedke show
how even Web applications with limited adaptation functionality can be created by reusable
components using WCML. Still, WCML provides no inherent support for defining adaptable
elements of content, navigation, presentation, and application behavior, nor does it provide
mechanisms for describing different adaptation contexts, such as user preferences, device
capabilities, etc.

Also inspired by the concepts introduced by WebComposition and WCML, this thesis will
introduce a component-based declarative document model designated to develop adaptive
Web applications. Yet, to represent the basic concepts and concerns characterizing adaptive
hypermedia and Web-based systems, the proposed component model will provide a more
explicit typing of components on a number of levels of abstraction, as well as a central focus
on device, user, and context adaptation.

3.2.2 HMDoc

Westbomke et al. [Westbomke 2001, Westbomke and Dittrich 2002] propose HMDoc, an XML-
grammar for the implementation and presentation of platform-independent structured hy-
permedia documents. It is based on the concepts of Tochtermann’s hypermedia reference
model [Tochtermann and Dittrich 1996] which were transformed into a declarative specifica-
tion based on an XML document type definition (DTD). A hypermedia document described
in HMDoc is called a hyperdocument and consists of so-called HMObjects as well as additional
structuring elements (see Figure 3.1).

The elementary objects of an HMDoc document are so-called components aimed at the
integration of media objects into a hypermedia presentation. A component contains exactly
one media object and (optionally) a number of additional descriptive metadata attributes.
On top of components so-called document nodes playing an information conveying role are
specified. They can not only contain components but also aggregate other document nodes,
so that an arbitrary deep hierarchy of document nodes is supported. Furthermore, in order
to provide hypertext navigation functionality, so-called links are used. A link is characterized
by its source and destination anchors, each of which may be (parts of) components, docu-
ment nodes, or even entire hyperdocuments. A hyperdocument described in HMDoc is thus
specified as a collection of document nodes, components, media objects, and links.

Besides the basic concepts of a hyperdocument (components, document nodes, and links),
HMDoc also introduces so-called structuring concepts. Two structuring concepts are sup-
ported: 1) subdocuments (i.e. disjunct reusable subsets of a hypermedia document) and 2)
views. The main goal of a view is to facilitate the user-specific presentation of a hyperdoc-

44 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

hyperdocument

document node

component

media object

link

anchor

1

*

*

*

1

*

*

1

1

* *

**

*

Figure 3.1: Basic structure of an HMDoc hyperdocument [Westbomke and Dittrich 2002]

ument by presenting only a restricted subset of it for a given user. Still, it is unfortunately
not further specified under which conditions a view should be used in a given usage scenario
(e.g. for a specific user or user group), nor is an explicit modeling of different usage contexts
foreseen.

While HMDoc document descriptions are implementation and platform independent, West-
bomke et al. [Westbomke and Dittrich 2002] also deal with aspects of their presentation and
propose the usage of external XSLT-based techniques for this purpose. Still, the automatic
adjustment of HMDoc documents to different user or device profiles (or models) or different
output formats is not considered. Furthermore, though a number of requirements towards
a visual authoring environment aimed at the intuitive creation of HMDoc documents are
identified and mentioned, there is no appropriate implementation available, yet.

3.2.3 Intensional Hypertext

As a “complementary approach for adaptive and adaptable hypermedia” Wadge and Schrae-
fel introduce the notion of Intensional Hypertext [Wadge and Schraefel 2001]. It is based on
intensional logic, i.e. the logic of assertions and expressions, which “vary over a collection
of contexts or possible worlds”. The basic idea behind Intensional Hypertext is that au-
thors produce HTML pages with extra markup (called intensional tags) which is aimed at
explicitly delimiting parts that are sensitive in various ways to a given context. Thereby, a
context is defined as sets of values for parameters which specify the current user profile as
supplied by the current Web page URL and the latest user input. The resulting document
format is thus a proprietary extension of HTML and is called Intensional Markup Language
(IML [Wadge 2000])3.

The language constructs of IML support basic adaptation mechanisms. Conditional inclu-
sion allows to show or hide different versions of texts and HTML fragments based on context
parameters. Parameter substitution means the inclusion of the values of context parameters
into an HTML document. Stretchtext is text available in different levels of detail so that it
can be adapted according to the current reader’s expertise or interest. Similarly, droptext is a

3IML is a further development of Intensional HTML (IHTML [Wadge et al. 1998]), a former extension of
HTML by intensional logic.

c© Copyright TU Dresden, Zoltán Fiala 45

Chapter 3. Development of Adaptive Web Applications: State of the Art

single block of text that can be made to appear or disappear separately, without affecting any
other part of the document. Furthermore, IML also supports so-called stereotype parameters
(i.e. parameters that have a discrete set of values, each of which represent a kind of common
user profile) as well as transversion links. The latter are conventional HTML links extended
with expressions that trigger context parameter updates that are automatically performed
when a user follows these links. Based on this mechanism, parts of the context information
can be changed during the user’s browsing session.

The Web pages authored in IML are translated into a Perl-like language called ISE (In-
tensional Sequential Evaluator [Swoboda and Wadge 2000]). To generate the appropriately
adapted individual pages at run-time, the Web server runs the ISE interpreter in the appro-
priate context. This interpreter produces HTML that, when displayed in the user’s browser,
is rendered into the desired adaptation of the requested page.

Though IML allows for quickly defining light-weight adaptation operations to be performed
on Web documents, a main disadvantage of the approach is that it does not support for a clear
separation of concerns such as content, layout, navigation or adaptation. Quite the opposite,
since it is an extension of HTML, all these different aspects are hard-wired and intertwined
in one single IML document, which makes its management and reuse quite complicated and
also implies that there is no support for output formats other than HTML. Furthermore,
so far there are no corresponding authoring tools available that would support the intuitive
creation of IML documents.

3.2.4 CONTIGRA

The CONTIGRA [Dachselt et al. 2002, Dachselt 2004] research project4 pursues the chal-
lenge to easily develop Web-based interactive 3D applications from reusable and standard-
ized declarative components. Its main focus is on the identification and classification of 3D
interaction elements (3D widgets) as well as on the creation of an XML-based architecture
for their specification and composition.

In order to allow for component-based reuse, CONTIGRA introduces the concept of declar-
ative 3D components. These are XML document instances describing reusable building blocks
of 3D user interfaces that can be easily configured and put together to complex 3D scenes.
They are specified by a number of XML markup languages (based on XML schema defini-
tions), each declaring a specific aspect (geometry, composition, implementation, etc.) of 3D
components (see Figure 3.2).

An instance document of the grammar CoApplication defines an overall 3D application
in terms of typical scene parameters (such as lights and viewpoints) and a reference to a 3D
root component containing the whole scene. This component is defined by two XML docu-
ments, one for its interface (according to the schema CoComponent), the other for its imple-
mentation (an instance of CoComponentImplementation). The interface document contains
configurable high-level parameters defining a component’s functionality as well as authoring
and other meta information. The implementation document firstly contains a component
graph which is a transformation hierarchy containing references to other 3D components.
For all additional parts of the scene, which are not yet available as a reusable component,
it secondly contains a scene graph. This is split into three parts for audio, geometry, and
behavior nodes, usually as references to external scene graph files. At present X3D is used for
the geometry, and the extended grammars Audio3D [Hoffmann and Dachselt 2003] and Be-

4The acronym CONTIGRA stands for “COmponent-orieNted Three-dimensional Interactive GRaphical
Applications”.

46 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

CONTIGRA-ComponentsCONTIGRA-Components

X3D

SceneGraph

X3D

CONTIGRA-Documents

XML Schemas

CONTIGRA

Component
Implementation

Sounds

Java

Media

Sounds

Java

Media

1 - n
Scene-
graph Files

Audio

Graph

Geometry

Graph

Behavior

Graph

Audio

Graph

Geometry

Graph

Behavior

Graph

CONTIGRA

Application

<CoApplication>

Description of the
3D-Scene

Light, Viewpoints…

à Root Component

CONTIGRA

Component

<CoComponent>

Interface
Declaration

Meta & Authoring
information,
Parameters

Description of the
Implementation

Subcomponent graph,
Sub-Scenegraphs,
Links

<CoComponent
Implementation>

XML Instance Files

X3D
Audio3D,

Behavior3D

Scenegraph Files External
Files

Figure 3.2: Overview of the CONTIGRA markup languages [Dachselt 2004]

havior3D [Dachselt and Rukzio 2003] for the definition of spatial audio and complex behavior
nodes respectively. The third part of a CoComponentImplementation document consists of
a separated link section connecting referenced parts.

In order to allow for the intuitive visual authoring of XML-based 3D applications from
CONTIGRA components the CONTIGRABuilder [Dachselt 2004] was developed. It is based
on an extensible repertoire of visual editor modules aimed at the visual composition of com-
ponents as well as the configuration of various component properties (parameter, metadata,
geometry, behavior, etc.). The applications created with the CONTIGRABuilder are de-
scribed independently from proprietary 3D toolkits or APIs, therefore they can be automat-
ically translated into target formats such as VRML97, X3D, OpenSG, MPEG-4 or Java3D
by using either an internal object model (data binding) or a series of corresponding XSLT-
Stylesheets.

CONTIGRA is a good example for the efficient application of reusable declarative im-
plementation artefacts for Web-based application development. However, it focuses on the
specifics of 3D user interfaces elements (geometry, behavior, etc.), not addressing the require-
ments of traditional two-dimensional hypermedia presentations. Furthermore, even though
Dachselt mentions the importance of adjusting 3D applications to different users, contexts,
and client devices [Dachselt 2004], CONTIGRA components do not provide inherent supoort
for adaptation, yet.

3.2.5 CHAMELEON

The CHAMELEON project [Wehner and Lorz 2001] aims at developing formats and tools
for reusable, adaptive courseware (courseware components) for Web-based eLearning sys-
tems. Courseware is represented in an XML-based document format called TeachML that
distinguishes between four abstraction levels: media objects, content units, didactical units,
and structures (see Figure 3.3).

On the lowest level, there are media objects that represent the atomic parts of TeachML

c© Copyright TU Dresden, Zoltán Fiala 47

Chapter 3. Development of Adaptive Web Applications: State of the Art

Course

Animation

e.g. SMIL

JAVA -

Applet

Audio

e.g. MP3

Wave

Code -

block

Text

(formatted)

Bild

z .B .

JPEG ,

GIF

Formula

MathML

Video

MPEG

Shock -

wave
other

Group of Media Objects Media objects with Explanation

other

Exercise

Statement

Example

Chapter Introduction Definition

Explanation Question Solution

Argument Problem List

Answer Table other

other

Navigational Structure

Layout

Hyperlink View

Structures Didactical Units

Content Units

Media objects

A
b

s
tr

a
c
ti

o
n

 L
e
v
e
l

e.g. e.g.

Figure 3.3: Overview of the TeachML document model [@CHAMELEON]

documents. They can either reference external media instances (e.g. images, audio or video
files, etc.) or serve as direct containers for textual content such as plain text, source code, or
formulas. On the second level, media objects are composed to so-called content units. They
group media objects which belong together to transmit a common message to the learner,
e.g. a figure and its description or a set of media objects (for instance consisting of several
formulas, texts, and references). On the third abstraction level, didactical units are defined
that play a well-defined didactical role in a TeachML-based eLearning course. They can not
only contain content units but also other didactical units, i.e. an arbitrary deep hierarchy
of didactical units is supported. A top-level didactical unit has the type course. Further
predefined didactical unit types are chapter, definition, line of arguments, example, exercise,
etc., but arbitrary author-defined extensions are also allowed.

While media objects, content units, and didactical units encapsulate content elements on
different abstraction levels, the TeachML grammar also allows to define so-called structures
on top of them (see the left side of Figure 3.3). Navigational structures are directed cyclic
graphs that define navigational paths (in form of guided tours) through didactical units.
Layout structures [Meißner et al. 2001] provide a facility for the spatial arrangement of con-
tent elements for a given output format (e.g. Web-based or print media). Finally, hyperlink
structures allow to define hyperlink references between content elements on arbitrary levels.

For the visual authoring of TeachML documents the CHAMELEONBuilder was devel-
oped [Chevchenko 2003]. It is based on an extensible modular architecture and provides a
number of editors plug-ins for graphically creating courseware components and interlinking

48 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

them to structures. Since the authoring tool for adaptive Web applications introduced in
this thesis is based on the same plug-in architecture, it will be described in more detail in
Section 5.2.

The levels and structures of TeachML allow to capture the main elements of educational
hypermedia presentations. Moreover, the possibility to define typed components provides for
efficient reuse and extensibility on all abstraction levels. However, an automatic adaptation
of components to explicit student models or other context parameters (user preferences,
device capabilities, environment context, etc.) has not been considered, yet. Note that the
component-based document format to be introduced in Chapter 4 was significantly inspired by
CHAMELEON, aiming at generalizing its component concept to a broader range of adaptive
Web applications.

3.2.6 RIML

To reduce the development effort involved in building Web applications for mobile and other
non-desktop devices, Ziegert et al. introduce the Renderer Independent Markup Language
(RIML [Ziegert et al. 2004]). It is based on the “Author once – Display Everywhere” philos-
ophy, i.e. the creation of Web content in a device independent markup language which then
gets adapted to the special characteristics of the accessing device. Similarly to IML, RIML
is not a stand-alone language, rather a custom extension to XHTML 2.0 which adds adap-
tation features such as pagination and device independent layout mechanisms. Furthermore,
in order to support form-based interactions, the RIML profile also includes the XForms 1.0
language.

As a means for structuring content on a Web page RIML uses the section element of
XHTML 2.0 [Axelsson et al. 2004]. As a consequence, the author of a RIML document is
required to put all content that should be presented on the same screen into the same section.
While sections might be nested, the innermost sections get never split up. The consequent
use of sections allows to exploit the adaptation features provided by the RIML, i.e. its support
for device independent layouts and pagination.

The layout module of RIML supports the specification of device (class) specific layouts. It
defines a set of container types: rows, columns, grids as well as so-called frames. Whereas the
containers define the overall structure of a layout definition, frames are used to fill the regions
of the layout with content. This is accomplished by the assignment of frames to XHTML 2.0
sections, i.e. the content of a section is always rendered within the region of its associated
frame.

A further adaptation mechanisms facilitated by RIML is pagination. In order to cope
with the small display sizes of mobile devices, it aims at dividing the content assigned to a
frame into multiple pages (by using sections as implicit splitting hints). To use this feature
authors can annotate selected frames as “paginable”. Furthermore, they can also control the
pagination process by specific metadata attributes, e.g. by explicitly declaring the minimum
width of a frame in pixels. When pagination occurs, so-called navigation links are generated
between the split pages. Again, authors can use RIML-specific metadata to control the types
and values of these links.

For the graphical creation of RIML documents the Consensus authoring environment was
developed. It is implemented as a plugin of the Eclipse open source platform and comprises
a set of so-called views and editors. For editing RIML documents a built-in XML editor
is provided that supports for code completion and validation based on the RIML schemas.
The Frames Layout View is a visual tool that allows a Web author to get a first impression

c© Copyright TU Dresden, Zoltán Fiala 49

Chapter 3. Development of Adaptive Web Applications: State of the Art

(preview) of how a document (based on an abstract RIML layout description) will look like
on different platforms. Similarly, the RIML Device Dependent View provides an overview
how a RIML document is paginated, i.e. how many pages are created, and what they con-
tain. For more information on the RIML and its authoring tools the reader is referred
to [Ziegert et al. 2004].

The RIML is well suited for the adjustment of textual (XHTML based) content to the
limited displays of mobile devices, as was also demonstrated in the EU project Consen-
sus [@Consensus]. Still, it does neither support basic adaptation techniques such as condi-
tional inclusion of page fragments (or variants), nor non-textual media specific adaptations
(such as the provision of media elements with quality alternatives or the replacement of im-
ages with video or textual content, etc.). Furthermore, the usage of XHTML does not allow
for a clear separation of the concerns content, structure, navigation, presentation, and adap-
tation. Finally, the lacking support of current Web browsers for the standards XHTML 2.0
and XForms implies also some limitations to the ubiquitous applicability of the RIML.

3.2.7 The XiMPF document model

For the device independent publication of multimedia content Hendrickx et al. introduce
in [Hendrickx et al. 2005] the XiMPF document model (eXtensible Interactive Multimedia
Publication Format). It is fashioned after the MPEG-21 Digital Item Declaration (DID)
model [ISO 2002], but uses a semantically richer set of elements to structure and annotate
the presentation content.

The XiMPF document format defines a multimedia document as a tree-like hierarchy
of composing items (see Figure 3.4). Each item combines a number of presentations, de-
scriptions, template instances, and subitems. A presentation aims at the platform specific
publication of an item’s content (e.g. for the Web or for a set top box). It references a number
of description elements that contain descriptive language constructs for specifying its struc-
ture (i.e. the subitems it uses), layout, synchronization, etc. Description elements further
include references to subitems to precisely place them into a hierarchy. These references are
resolved by so-called template instances that link a reference to a specific presentation in
another item.

The XiMPF document model makes abstraction of item content. It allows to use atomic
multimedia resources as alternatives for composite presentation fragments, for instance the
combination of a picture and its corresponding textual caption might be an alternative for a
video. Furthermore, XiMPF extensively uses existing W3C technologies (such as XHTML2,
CSS, and SMIL) for structure, layout, and synchronization descriptions. However, it also
introduces an own language (called XML Interaction Language) to specify the interactive
behavior of a multimedia presentation.

The publication architecture of XiMPF is based on the XML publishing framework Co-
coon [Ziegeler and Langham 2002]. It consists of an XML processing pipeline (aimed at
resolving and adapting XiMPF documents to a given presentation version), a core engine, a
resource and metadata database, as well as an adaptation service registry [Oorts et al. 2005].
The latter allows to register adaptation services for processing atomic multimedia resources
like audio and video. This adaptation primarily concerns the adjustment of multimedia con-
tent to a client profile and is performed based on information gathered from the query string

5The dashed lines denote the inclusion of references to Description and TemplateInstance elements in
Presentation elements. The arrowed lines represent the resolution of a UseItem element to a Presentation or
Item through a TemplateInstance element [Hendrickx et al. 2005].

50 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

Figure 3.4: Schematic outline of an XiMPF document5 [Hendrickx et al. 2005]

of HTTP requests.
The main strengths of the XiMPF document model are the reuse of both media resources

and presentational information at a fine level of granularity, as well as the automatic adapta-
tion of both singular and composed media content. However, while its main focus lies on the
presentation of multimedia content on different presentation platforms, it does not explicitly
address basic aspects of hypermedia adaptation (e.g. the adjustment of a Web site’s logical
or navigational structure), nor other context parameters (e.g. dynamic user information or
environmental data). Furthermore, there are no graphical tools aimed at the intuitive visual
creation and manipulation of XiMPF documents (and descriptors) available, yet.

3.2.8 Portlets as Portal Components

The recently emerged notion of Web portals indicates Web sites that provide a comprehen-
sive entry point for a large array of resources and services. A portal application typically
contains different modules (e.g., news, free e-mail services, search engines, online shopping,
chat rooms, discussion boards, or links to other sites) and also provides some kind of per-
user customization for these services. Hepper defines a portal as a “Web-based application
that provides personalization, single sign-on, and content aggregation from different sources,
and hosts the presentation layer of information systems [Hepper 2004]”. According to his
definition, a portal is composed of pluggable interface components that represent a certain
application functionality, generate dynamic Web content, and thus enable modular Web ap-
plications.

In the recent years, different incompatible APIs for portal components have been intro-
duced by various vendors. To overcome the problems arising from their missing interoperabil-
ity, the Java Portlet Specification JSR 1686 [Abdelnur et al. 1999] was proposed. According
to JSR 168, a portal consists of portal pages, each being an aggregation of so-called portlets.
A portlet is a Java-based Web component that processes requests and generates dynamic

6The acronym JSR stands for Java Specification Request.

c© Copyright TU Dresden, Zoltán Fiala 51

Chapter 3. Development of Adaptive Web Applications: State of the Art

markup in form of HTML, XHTML, or WML fragments [Hepper 2004]. The fragments
generated by the aggregated portlets form a complete Web document. Portlets can store
persistent data for a specific user and also maintain temporary session information. Their
life-cycle is managed by a so-called portal container that provides them with the required run-
time environment. Besides local portlets, a portlet container can also run remote portlets by
using the Web Services for Remote Portlets (WSRP [Allamaraju and Brooks 2005]) protocol.

Each JSR 168 compatible portlet must implement the so-called portlet interface defining
the basic portlet life-cycle. This life-cycle comprises the phases of portlet initialization, request
handling, and portlet destruction. The request handling phase is further divided into the two
categories action handling and rendering. The latter allows the portlet to produce markup
depending on the portlet’s state information, backend data, its so-called portlet mode, and
window state. The portlet mode indicates the function a portlet performs and can be either
a custom mode or one of the three standard modes VIEW (the portlet generates markup),
EDIT (the portlet lets a user customize it), or HELP (the portlet provides help information).
The availability of portal modes may be restricted (i.e. personalized) to specific user roles
of the portal. Similarly, a portlet’s window state is an indicator of the amount of portal
page space that will be assigned to the content generated by a portlet, i.e. a portlet might
produce different markup for each window state. The generation of markup is performed by
the portlets’ doView method, mostly based on the invocation of a JSP template producing
HTML fragments. Unfortunately, this rather low-level programming model does not allow to
specify application and adaptation concerns in a more higher-level declarative way, nor does
it provide type safety for portlet composition.

Besides the portlet mode and the window state, portlets can adapt themselves to the ac-
tual portal that calls them based on the so-called PortalContext containing information
on the portal vendor, the portal version, and specific portal properties. Furthermore, for the
sake of personalization, they can also access user profile information according to the W3C
recommendation P3P (Platform for Privacy Preferences [Cranor et al. 2002]). However, the
data provided by P3P contains mainly (static) user identification and contact information
(e.g., name, post address, phone number, email). Consequently, the provided personaliza-
tion services are mostly restricted to the user-specific structuring (inclusion or exclusion) of
portlets as well as the individualization of their presentation style (in terms of colors and style
elements). Other kinds of adaptation, such as media or hypermedia navigation adaptation,
are not inherently supported and must be programmed manually by portlet programmers.

3.2.9 Active Documents

Whereas the aforementioned approaches represent concrete document formats or compo-
nent models, Aßmann proposes general requirements and architectural styles for declarative
component-centric document models. He introduces in [Aßmann 2005] the concept of active
documents. These are documents that contain “both data and software, data and macros,
or data and scripts”, and that can be manipulated interactively. Typical examples for active
documents are spreadsheets, office documents containing macros, but also Web documents
comprising dynamic elements such as scripts, applets, etc. The main characteristic of an
active document is that it contains derived components (e.g. HTML fragments) that are au-
tomatically generated (derived) from a set of base components (e.g. HTML templates) by a
so-called embedded software (e.g. a template engine). That is to say, “an active document
exploits the power of programming to represent document content more concisely”.

To effectively cope with the complex engineering process of active documents, Aßmann
proposes to explicitly discern their architecture, i.e. to provide an architectural language

52 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

for them. From frequent problems in engineering active documents he derives three main
requirements: 1) support for invasive composition operations, 2) transconsistency, and 3)
staged architectures.

Invasive composition operations: Invasive composition operations are operations that
allow to embed document fragments into document templates [Aßmann 2003]. Two
kinds of operations can be distinguished: parameterizations and extensions. The former
means that code templates carry slots that can be filled with other code fragments,
so code templates are instantiated towards executable components. The latter denotes
that code templates also carry so-called hooks (extension points), which can be extended
with other fragments.

Transconsistency: The concept of transconsistency provides “hot updates” in an active
document. This means that every change to (parts of) an active document is automat-
ically propagated to all dependent parts immediately. Transconsistency is an extended
form of transclusion, a basic operation in hypertext systems. Transclusion ensures that
whenever a node, which is included into several nodes, changes, all embedding compo-
nents also change immediately. Transconsistency extends transclusion by supporting
arbitrary operations (besides embedding). A typical scenario is the dynamic generation
of fragments of an HTML document (derived components) based on XML documents
(base component) by means of XSLT stylesheets (embedded software). Thus, whenever
a base component is edited, all derived components are also changed. Furthermore, ap-
proaches such as applet-servlet interaction in Web form processing can be also described
as generalizations of transconsistency.

Staged Architectures: In order to address the specifics of Web-based systems the notion of
staged active documents is proposed. These are active documents that are processed in a
series of so-called stages, each producing code for the next stage. A staged architecture
is a sequence of n stages, where the nth stage produces the final document. Such
an architecture is prevalent for dynamic Web-based applications, where (sequences of)
server-side processing operations are optionally followed by the execution of client-side
scripts or applets. Thereby, each processing step (stage) might be both invasive and/or
transconsistent.

After identifying architectural styles for active documents, Aßmann defines a hypothesis
for their composition. According to this, a compositional technique for active documents
relies on four concepts: 1) explicit architectures for both software and documents (including
component models), 2) invasiveness, 3) staging, 4) and transconsistency. With these concepts,
he explains the architecture of many document processing applications, especially of Web-
based systems [Aßmann 2005].

Aßmann also denotes that a multitude of today’s Web-based architectures rely on com-
ponent models for the software and data components of active documents. Furthermore,
a number of them also supports invasive operations (e.g. by expanding HTML templates),
transconsistency, and staged architectures7. Nevertheless, as a main shortcoming of existing
techniques he identifies the lacking support for typed composition operations and explicit ar-
chitecture descriptions, which leads to “maintenance headache and a major cause for future
legacy systems”. To overcome this problem, he proposes fragment-based component models
that are controlled by meta models or schemas, respectively.

7Note that the publication of WCML, IML, RIML, and XiMPF documents is based on staged architectures.

c© Copyright TU Dresden, Zoltán Fiala 53

Chapter 3. Development of Adaptive Web Applications: State of the Art

We remark that such an explicit fragment-based component model for adaptive Web pre-
sentations has been developed within the scope of this dissertation project and will be pre-
sented in Chapter 4. Though published prior to Aßmann’s work on active documents, it
provides support for the three main requirements he mentions (i.e., invasiveness, transcon-
sistency, and staging).

3.2.10 Summary and Comparison

This section dealt with existing component-based and document-oriented Web engineering
approaches regarding their applicability for personalized, adaptive Web applications. It was
shown that they not only address different application areas, but also differ in their (extent
of) support for important engineering aspects8, such as reusability, extensibility, platform-
independence, adaptability, etc. Based on the criteria listed below, this subsection provides
a comparison of the reviewed solutions.

1. Application area: Is a particular component model designated to a specific appli-
cation area (e.g. Web-based 3D applications or eLearning systems) or is it a general
approach?

2. Explicit separation of concerns: Is an explicit separation of different Web applica-
tion concerns (e.g. content, structure, navigation, presentation, etc.) provided?

3. Reusability: To what extent (e.g. at which granularity) is the reuse of components
(or document fragments) provided?

4. Composability: Is it possible to aggregate reusable components (or fragments) to
composite components that can be again subject to further composition?

5. Device/platform independence: Is the approach/technique based on a particular
platform, Web output format (e.g. HTML), or specific end device; or does it allow a
platform- and device-independent specification of components?

6. Automatic presentation generation: Is an automatic transformation of compo-
nents to a given Web output format provided or does this require additional efforts
from developers9?

7. Built-in adaptation support: Does the component (or document) model provide
inherent support (e.g. in form of buil-in language constructs) to specify the adaptation
behavior of components? Which kinds (or aspects) of hypermedia adaptation (see
Chapter 2.2) does it cover?

8. Template support: Is there support for data-driven Web or hypermedia applications?
Is it possible to define component templates (or document/fragment templates) that
can be dynamically extended (filled out) based on a query to a dynamic data source?
Note that this aspect corresponds to Aßmans requirement towards invasive composition
(see Section 3.2.9).

8The aspects listed here also serve as basic requirements towards the solution proposed in this work (see
Chapter 4).

9Note that while HMDoc or WCML allow to describe Web or hypermedia applications in a platform-
independent way, authors of such documents/components are required to take care of the platform-specific
presentation of their components themselves. This means additional efforts in comparison to e.g. CONTIGRA
or CHAMELEON that support an automatic code generation for some given output formats.

54 c© Copyright TU Dresden, Zoltán Fiala

3.3. Model-based Web Design Methods

9. Interoperability with standards: Does a particular approach make use of (or is it
based on) on existing internet, W3C, or industry standards?

10. Tool support: Is the approach optimally supported by corresponding visual tool
support?

Based on these criteria, Table 3.1 provides a tabular comparison of the presented ap-
proaches. Note that while some rows contain a short textual explanation or comment, some
only provide a “rating” based on the following rating scheme: no support (-), limited support
(+), good support (++).

As can be seen, the majority of existing approaches (except for CONTIGRA and CHAME-
LEON) addresses Web (or hypermedia) applications in general and is thus not designated to
a specific application area. Furthermore, most solutions are based on XML technology and
also provide some support for platform independence by abstracting from a concrete Web
output format. However, only a few approaches allow for the automatic generation of a Web
presentation in a variety of output formats. Moreover, besides the separation of content and
presentation, there is only limited support for explicitly distinguishing further concerns, such
as navigation, semantics, behavior, or adaptation. Similarly, only a few solutions (WCML,
CONTIGRA, and CONTIGRA) provide the advantages of traditional component models,
among them fine-grained reuse, composability, and extensibility.

As the biggest shortcoming of all investigated approaches, one can consider their lacking
support for adaptation. Only a few of them supported (very limited) aspects of content
and presentation, the majority of the basic hypermedia adaptation techniques classified in
Section 2.2 is not addressed at all. Similarly, none of the described component models
contains an explicit context or user model, and only a few of them are supported by visual
development tools. Finally, hardly any approach supports component (or document fragment)
templates explicitly, i.e. only limited authoring support for dynamic Web Information Systems
is provided.

3.3 Model-based Web Design Methods

Recently, a number of model-based Web design methods for hypermedia and Web appli-
cations have been developed. Among the most significant contributions we mention the
Relationship Management Methodology (RMM [Isakowitz et al. 1995]), the Object Oriented
Hypermedia Design Model (OOHDM [Schwabe et al. 1996]), the Web Site Design Method
(WSDM [De Troyer 2001]), the Web Modeling Language (WebML [Ceri et al. 2000]), and
the Hera specification framework [Vdovjak et al. 2003]. Even though utilizing different for-
malisms and notations, a common characteristics of all approaches is to distinguish between
the conceptual model describing the application domain, the navigational model specifying
the (abstract navigational) structure of the hypermedia presentation, and the presentation
model specifying the rendering of navigation objects (layout). Some methodologies extend
these basic models by additional ones concerning further aspects of a Web application, such
as user interaction or different kinds of adaptation (personalization, device independence,
localization, etc.). Furthermore, selected approaches also provide visual authoring tools sup-
port for creating their models as well as facilities for the (semi-)automatic generation of a
running implementation based on these models.

There are different criteria to classify hypermedia design methodologies. One possibility
is to distinguish between the modeling techniques and formalisms they utilize. Accord-
ing to this aspect, Kappel et al. [Kappel et al. 2004] distinguish between data-oriented (e.g.

c© Copyright TU Dresden, Zoltán Fiala 55

Chapter 3. Development of Adaptive Web Applications: State of the Art

W
C

M
L

H
M

D
o
c

IM
L

C
O

N
T

IG
R

A
T
each

M
L

R
IM

L
X

iM
P

F
P
ortlets

ap
p
lication

area
W

eb
apps.

hyperm
edia

W
eb

apps.
3D

W
eb

apps.
W

eb-based
W

eb
apps.

W
eb

apps.
W

eb
apps.

eL
earning

ex
p
licit

-
content

and
-

geom
etry,

content,
content,

content,
-

sep
aration

of
navigation

behavior,
sem

antics,
presentation

presentation
con

cern
s

audio
presentation,
navigation

reu
se

su
p
p
ort

+
+

+
-

+
+

+
+

-
+

+
+

com
p
osab

ility
+

+
+

+
-

+
+

+
+

-
+

+
+

ex
ten

sib
ility

+
+

+
-

+
+

+
+

-
+

+
-

d
ev

ice/p
latform

+
+

-
+

+
+

+
+

+
+

-
in

d
ep

en
d
en

ce

au
tom

atic
p
resen

-
-

-
H

T
M

L
X

3D
,

X
H

T
M

L
,

X
H

T
M

L
X

H
T

M
L

-
tation

gen
eration

M
P

E
G

-4
P

D
F

b
u
ilt-in

ad
ap

tation
-

-
+

-
-

+
+

+
su

p
p
ort

adapt.
navigation

-
-

-
-

-
-

-
-

adapt.
content

-
-

+
-

-
-

+
-

adapt.
presentation

-
-

-
-

-
+

+
+

tem
p
late

su
p
p
ort

-
-

-
-

-
-

-
+

to
ol

su
p
p
ort

-
-

-
+

+
+

+
-

+

in
terop

erab
ility

X
M

L
X

M
L

-
X

3D
,

X
M

L
,

X
H

T
M

L
X

M
L
,

JSR
168,

w
ith

stan
d
ard

s
M

P
E

G
-4

SC
O

R
M

X
Form

s
M

P
E

G
-21

D
ID

W
SR

P

T
able

3.1:
C

om
parison

of
com

ponent-based
and

docum
ent-centric

W
eb

engineering
solutions

56 c© Copyright TU Dresden, Zoltán Fiala

3.3. Model-based Web Design Methods

RMM, Hera, WebML, SiteLang [Thalheim and Düsterhöft 2001]), hypertext-oriented (such as
HDM [Garzotto et al. 1993], WSDM), object-oriented (e.g. OOHDM, UWE [Koch et al. 2001],
OO-H [Gómez et al. 2001], OOWS [Pastor et al. 2003]), as well as software-oriented (e.g.
WAE [Conallen 2000]) methodologies. Frasincar [Frasincar 2005] further identifies design
methods for Semantic Web Information Systems (SWIS) that make use of Semantic Web
technology (XWMF [Klapsing and Neumann 2000], OntoWebber [Jin et al. 2001], Hera, On-
toWeaver [Lei et al. 2005], SHDM [Schwabe and de Moura 2003], SEAL [Maedche et al. 2003],
etc.). Another possible distinction can be made depending on the order in which different as-
pects of the resulting application are specified. Most existing approaches are content-driven,
i.e. they begin with the modeling of a Web application’s underlying content, which is followed
be the proper specification of its hypertext structure and user interface. However, there are
also presentation-driven methodologies that start with the design of the user interface of a
Web application. Similarly, task-driven (or audience-driven) methodologies are based on a
detailed specification of user tasks to be supported by the application.

The rest of this section provides an overview of the most relevant existing approaches for
designing hypermedia and Web-based systems, namely RMM, OOHDM, WSDM, WebML,
and Hera. Thereby, a special focus is on the question of how they support the specifi-
cation of different kinds of adaptation. Note that besides the Web design methods dis-
cussed here there exist also other approaches (see above). Still, they either do not address
adaptation at all or do not support techniques that are not provided by the methods men-
tioned here. For a more detailed overview of Web design methods the reader is referred
to [Murugesan and Deshpande 2001, Frasincar 2005, Casteleyn 2005].

3.3.1 Relationship Management Methodology (RMM)

One of the first approaches aiming at the structured design of data-centric hypermedia ap-
plications is the Relationship Management Methodology (RMM [Isakowitz et al. 1995]). It is
based on the consideration of a hypermedia application as a system that manages information
objects and their relationships. RMM distinguishes between four design steps: E-R design,
application design, user interface design, and construction/testing.

The focus of E-R design is to specify the data managed by the hypermedia application
in terms of entities and their associative relationships [Chen 1975]. Entities have attributes
describing the characteristics of the data they represent. Similar to database modeling tech-
niques, there are one-to-one and one-to-many relationships.

Application design aims at grouping attributes to so-called slices. A slice is a meaningful
presentation unit representing a group of attributes that have to be shown together. Slices
can be both aggregated as well as interlinked by using navigation primitives. RMM allows for
different navigation primitives (called access structures) such as indices, guided tours, links,
groupings, etc.

The next step is called user interface design and aims at describing the design of screen
layouts for every element (slice) defined at application design. This includes button layouts,
the appearance of nodes and indices, and the location of navigational aids. However, instead
of providing a more formal notation, RMM suggests to use the “paper and pencil” strategy
for this phase. Finally, the last step (called construction and testing) focuses on the imple-
mentation and testing of the resulting application based on traditional software engineering
methods.

Dı́az and Isakowitz propose in [Dı́az et al. 1995] the design of RMCase, a tool to support
RMM. The proposed tool offers so-called contexts (or views) corresponding to the above

c© Copyright TU Dresden, Zoltán Fiala 57

Chapter 3. Development of Adaptive Web Applications: State of the Art

described design phases. Whereas there are visual contexts designed for drawing the E-R
model and the application model, the user interface has to be specified by creating HTML
templates, mostly based on some third-party HTML editor. Furthermore, the created HTML
templates are assumed to have appropriate “slots” which can then be populated with data
at run-time.

While RMM is one of the first approaches aimed at a clear separation of concerns in
hypermedia design, it does not address adaptation, personalization, or device independence.
Furthermore, no output formats different than HTML are supported.

3.3.2 Object-Oriented Hypermedia Design Method (OOHDM)

The Object-Oriented Hypermedia Design Method (OOHDM) [Schwabe et al. 1996] is a me-
thodology aimed at the design of complex hypermedia applications. It is based on well-known
concepts of object-oriented application development (OMT) as well as on the Hypertext De-
sign Model (HDM [Garzotto et al. 1993]). Recently, the concepts of OOHDM were adopted
to the context of the Semantic Web [Berners-Lee et al. 2001] in the form of the so-called Se-
mantic Web Hypermedia Design Method (SHDM [Schwabe and de Moura 2003]). Though it
differs from OOHDM by using Semantic Web technology (RDF(S) and OWL) for expressing
its models, the two methods are conceptually the same. They define five development phases:
requirements gathering, conceptual design, navigational design, abstract interface design, and
implementation (see Figure 3.5).

Requirements

Gathering

Conceptual

Design

Navigational

Design

Abstract

Interface

Design

Implementation

identify use cases

and scenarios

domain model by

classes and

relationships

nodes, links,

access structures

and contexts

abstract data views

(ADVs)

realization

Figure 3.5: OOHDM/SHDM overview

The Requirements Gathering phase identifies the users of the system and the activities
they would like to perform with the system based on scenarios and use cases. For each use
case, OOHDM/SHDM introduces a user interaction diagram, which graphically represents
the interaction between the user and the application. Subsequently, in order to validate each
use case, the designer might interact with users to obtain feedback and optionally adjust
interaction diagrams.

The Conceptual Design phase specifies the overall application domain based on classes and
their relationships. The used notation is based on UML class diagrams, but it provides addi-
tional features such as multiple valued attributes as well as explicitly directed relationships.
In SHDM this notation was replaced by RDF(S) and OWL [Patel-Schneider et al. 2004].

The Navigational Design phase defines a hypertext view on top of the conceptual model.
It is expressed by a Navigational Class Schema and a Navigational Context Schema. The
former specifies the objects of a hypermedia application through which users can navigate.
These can be Nodes that group class attributes from the conceptual classes, Links between
these Nodes as well as Access Structures that provide different navigation possibilities such
as indices, menus or guided tours. The Navigational Context Schema allows to restrict the
navigation spaces accessible to specific user groups by grouping navigational objects to so-

58 c© Copyright TU Dresden, Zoltán Fiala

3.3. Model-based Web Design Methods

called Contexts.
The following phase is called Abstract Interface Design. It specifies the application’s

user interface by using Abstract Data Views (ADV) that define the interface appearance of
navigational classes, access structures, menus, buttons, etc. Abstract Data Views are formal,
object-oriented models of interface objects, allowing to defined the appearance of navigational
objects in a high-level manner [Cowan and de Lu 1995].

Finally, the Implementation phase aims at the realization of the designed application.
In this phase, the designer has to map the navigational and abstract interface models into
concrete objects available in the chosen implementation environment. The model generated
after performing previously defined activities can be implemented in a straightforward way
using many of the currently available hypermedia platforms such as Hypercard, Toolbook,
Director, HTML, etc. [Schwabe et al. 1996].

In order to explicitly address different kinds of users, Rossi et al. extended OOHDM by
different personalization mechanisms [Rossi et al. 2001]. This personalization is expressed
by introducing the concept of the user class as part of the application’s conceptual model.
Attributes of the user class can be subsequently used to refine (or parametrize) the results
of navigational design, in order to adjust the information that is shown to the user (e.g. by
offering a personalized price reduction) or to select or recommend links that are more relevant
to him. However, OOHDM makes no further assumptions on the design and implementation
of the corresponding link recommendation algorithms. Furthermore, only personalization
examples concerning navigational design are discussed. Important aspects of personalization
such as device-independence, presentation layer adaptation, as well as dynamic adaptation
(according to a continually changing user or context model) are not addressed.

For developing Web applications using OOHDM different tools have been developed. As
one of the first tools the OOHDM-Web environment was introduced [Schwabe et al. 1999]. It
provides three interfaces: the authoring environment for creating navigation schemas based on
the generation of corresponding database definitions, the browsing environment for specifying
HTML templates corresponding to ADVs, and the maintenance environment for specifying
interfaces for inserting instance data. Furthermore, it is also supported by a CASE envi-
ronment allowing to describe the conceptual, navigational, and interface models using the
OOHDM notation. Another implementation is OOHDM-Java2 [Jacyntho et al. 2002] which
is based on J2EE (Java 2 Enterprise Edition) technology and supports OOHDM models that
are extended by a business model as a generalization of the conceptual model and the appli-
cation’s transactional behavior. In this implementation OOHDM models are stored as XML
documents and the page templates are defined in JSP (Java Server Pages).

Finally, besides the aforementioned “native” implementations, we also mention a different
solution aimed at the mapping of OOHDM design artefacts to a component-based imple-
mentation. Segor and Gaedke propose in [Segor and Gaedke 2000] a number of heuristic
implementation rules to map high-level OOHDM design specification to WCML components
(see Section 3.2.1). The usage of such a fine-granular implementation base provides for bet-
ter traceability and maintainability of the final implementation code. A similar approach
allowing an even automated mapping of high-level design artefacts to a component-based
implementation will be described in Section 5.3 of this thesis.

3.3.3 Web Site Design Method (WSDM)

The Web Site Design Method (WSDM [De Troyer 2001, Casteleyn 2005]) is an audience-
driven Web design methodology. This means that it starts with an explicit modeling of a

c© Copyright TU Dresden, Zoltán Fiala 59

Chapter 3. Development of Adaptive Web Applications: State of the Art

Web application’s users, their tasks, and their requirements, and uses this information to
specify the conceptual, navigational, and presentational aspects of the resulting Web site.
An overview of the design steps of WSDM is depicted in Figure 3.3.3.

Mission Statement Specification

Audience Modeling

Audience Classification

Audience Class Characterization

Conceptual Design

Task & Information Design

Navigational Design

Implementation Design

Site Structure Design

Presentation Design

Data Source Mapping

Implementation

Figure 3.6: WSDM overview

In the first phase of WSDM the so-called mission statement is expressed. It specifies
the purpose, the subject, and the targeted users of a Web site, and is formulated in natural
language. It is followed by the two-step audience modeling phase that aims at identifying the
different types of visitors of the Web site, as well as their requirements and characteristics.
In the first step, audience classification, the different kinds of users (audience classes) are
identified and ordered into a so-called audience class hierarchy. Thereby, an audience class
comprises visitors with similar functional and informational requirements. In the second
step, audience class characterization, the characteristics of the different (previously identified)
audience classes are specified in more detail. These characteristics are later taken into account
when deciding how to present information to these particular visitors.

The next phase of WSDM concentrates on the conceptual design of the site. Again, it is
divided into two substeps: task and information design, and navigational design. In the task
and information design substep the tasks to be performed by each audience class are modeled.
For this purpose a modified version of the Concurrent Task Tree (CTT [Paterno et al. 1997])
notation is utilized, which allows to hierarchically order and condition tasks as well as to
specify temporal relations between them. Furthermore, for each identified task a conceptual
data model (object chunk) has to be constructed, which exactly describes the information/-
functionality that is needed to fulfill this task. Object chunks are modeled by using a slightly

60 c© Copyright TU Dresden, Zoltán Fiala

3.3. Model-based Web Design Methods

modified version of the Object Role Modeling (ORM [Halpin 2001]) technique. The role of
the navigation design step is to define the navigational structure of the Web site and to model
how the different audience classes can navigate through it. The central navigation entities are
nodes that represent units of information or functionality. The information or functionality
represented by a node is denoted by connecting the node to one or more chunks. Furthermore,
nodes can be connected by links. Four different types of links are supported: structural links,
semantic links, navigation aid links, and process logic links [Casteleyn and De Troyer 2002].
Structural links provide the actual structure of the information and functionality being of-
fered on the site. Semantic links represent semantic relationships that exist (in the universe
of discourse) between the concepts represented by the nodes involved. Navigation aid links
are put on top of the existing structural link structure, and are aimed to better facilitate
navigation for the visitor. Finally, process logic links connect two or more nodes to express
part of a workflow or an invocation of an (external) functionality.

The conceptual design phase is followed by the implementation design, which again consists
of three sub phases: site structure design, presentation design, and data source mapping.
During site structure design the nodes defined at navigation design are grouped into so-
called pages. Presentation design describes the layout of those pages. Subsequently, the data
source mapping sub phase aims at creating mappings between the object chunks and the
actual data to be presented.

Finally, taking as an input the object chunks, the navigation design, and the implemen-
tation design, the actual implementation can be generated. This transformation can be
performed automatically and was realized in a prototype. For a more detailed descrip-
tion of the WSDM design phases and their corresponding models the reader is referred
to [De Troyer 2001, Casteleyn 2005].

To specify the (run-time) adaptive behavior of a Web site at design time, Casteleyn intro-
duces the Adaptation Specification Language (ASL [Casteleyn et al. 2003, Casteleyn 2005]).
The main idea behind this approach is the automatic reorganization of a Web site based on
user access data that can be collected at run-time. Still, instead of being personalized for
individual users based on their (individual) browsing patterns, the Web site adapts itself to
common user browsing patterns by gathering access information from all users. With the
Adaptation Specification Language, the designer has a means to specify when certain adapta-
tion should be applied (i.e. the adaptation policy) and which adaptation should be performed
(i.e. the adaptation strategy).

ASL is an ECA10-based rule language: it uses events and conditions that trigger actions.
Events can be user events (such as starting or ending a session, clicking on a link, loading
a Web site element), system events (e.g. the initialization of the Web site itself) or time
events (specifying the elapse of a certain time interval). Conditions can be defined on the
basis of constants and variables. Actions are transformations of the Web site’s structure (i.e.
manipulation of object chunks, nodes, pages) and navigation (e.g. removing, adding, moving
links). Adaptation of content and presentation (e.g. based on client device capabilities or
other context information) have not been considered, yet.

3.3.4 WebML

WebML (Web Modeling Language [Ceri et al. 2000, Ceri et al. 2003b]) was developed at the
Politecnico di Milano and is a “visual language” aiming at the specification of data-driven
Web applications. Its models utilize a graphical representation but can be also serialized to

10ECA stands for event-condition-action rules [Dayal 1988].

c© Copyright TU Dresden, Zoltán Fiala 61

Chapter 3. Development of Adaptive Web Applications: State of the Art

an XML-based notation.
The basic modeling phases of WebML strongly resemble those introduced by OOHDM. The

data design phase of WebML specifies the data model of the Web application by means of E-R-
diagrams [Chen 1975]. It is followed by the hypertext design phase that is concerned with the
construction of a coherent navigation model for the Web site based on the concept of content
units and links. Content units are the basic elements that can be shown on a Web page. They
can either publish information from a data source or represent forms with which content can
be entered. Content units can be aggregated to more complex navigational elements such
as pages, page areas (group of pages logically belonging together) or even whole site views.
Finally, the implementation phase aims at mapping the data schema to a data source as
well as at implementing the WebML pages by mapping them to JSP templates. However,
WebML does not not include a specific model for expressing presentation at the conceptual
level and hides the presentation in application specific XSLT stylesheets. The drawback of
this approach is that system maintenance becomes difficult, since these stylesheets have to
be implemented for each specific output device and format11.

Figure 3.7: WebRatio site view example [@WebRatio]

In order to support personalization, WebML includes an explicit notion of groups and
users as parts of a Web application’s data model. The standard profile of a user includes
identification information, login, trace information (visited pages and time of visit), and group
membership, but is extensible to fit a given application domain. Groups contain individual
users that are somehow related (e.g. children) and can thus be associated with dedicated site
views. Designers can utilize ECA-based business rules for computing and manipulating such

11As an alternative solution, the approach proposed in this dissertation will utilize abstract layout descrip-
tions that can be automatically transformed to a given Web output format(see later in Section 4.3.2).

62 c© Copyright TU Dresden, Zoltán Fiala

3.3. Model-based Web Design Methods

user specific information [Ceri et al. 1999]. These allow to classify users in user groups, to
manage user-specific information (e.g. a shopping cart), or to push information to users (e.g.
on new purchase opportunities).

Furthermore, in [Ceri et al. 2003a] the notion of a context model is also introduced, allow-
ing to describe context entities (e.g. device or location) associated to groups or users. Using
these additional models designers can specify both context-aware pages (i.e. pages adapted
according to context attributes) as well as different site views for specific users, groups, and
contexts. Nevertheless, the corresponding adaptation conditions primarily intervene on the
level of the hypertext model, adaptations in the presentation layer have not been considered,
yet.

As a visual environment supporting the WebML methodology WebRatio [@WebRatio] was
introduced (see Figure 3.7). It is without doubt the most mature available CASE tool for
model-based Web application development that is also used commercially. However, the tools
provided by WebRatio still do not cover the personalization and adaptation aspects provided
by the WebML models.

3.3.5 Hera

Hera [Frasincar et al. 2002, Vdovjak et al. 2003] is a model-based methodology for the design
and structured development of Adaptive Web Information Systems (AWIS). It has its origins
in the RMM design methodology (see Section 3.3.1), i.e. it focuses on the design of Web
Information Systems from a data-oriented perspective. Hera extends the concepts of RMM
by a number of additional modeling features, such as personalization, adaptation, or user
interaction. Furthermore, it uses Semantic Web technologies (RDF and RDFS) for expressing
the different models that describe an AWIS. As formerly mentioned, Frasincar refers to Hera
as a SWIS (Semantic Web Information System) methodology [Frasincar 2005].

Similar to the other methods described above, Hera distinguishes between three aspects
of WIS design: the semantic aspect, the navigational aspect, and the user interface aspect.
Each of these aspects is specified in form of a model: the Conceptual Model (CM) describing
the data of the application domain, the Application Model (AM) specifying the application’s
navigational structure, and the Presentation Model (PM) specifying its user interface.

In addition to these basic models, Hera puts a main focus on the specification of adap-
tation in a WIS. As described in [Frasincar et al. 2002], it considers adaptability (or static
adaptation) and adaptivity (dynamic adaptation)12. Nevertheless, in comparison to most
other methods mainly focusing on navigation adaptation, the adaptation design in Hera is
not considered as a separate design phase (or as a part of only one design phase), but should
be addressed throughout all design steps. That is to say, different kinds of adaptation con-
cerning the application’s underlying data, its navigation structure, and presentation layer
are foreseen. Furthermore, these adaptations should consider both the user (his preferences,
characteristics, and navigation history) as well as his usage context (e.g. client device). How-
ever, prior to the work presented in this thesis, Hera’s presentation model was not formalized,
nor was adaptation addressed at presentation design.

Since parts of the work presented in this dissertation has been carried out within the scope
of a collaboration with the Hera project (and especially the adaptive presentation model of
Hera was designed, formalized in RDF(S), and implemented as an extension of the original
Hera models in the context of this work), a detailed description of the Hera design phases
and their corresponding component-based realization will be given in Chapter 5.

12Note that a definition for different types of hypermedia adaptation was provided in Section 2.2.

c© Copyright TU Dresden, Zoltán Fiala 63

Chapter 3. Development of Adaptive Web Applications: State of the Art

3.4 Discussion

This chapter provided an overview of related work on the field of engineering adaptive Web
applications. First, it investigated component-based and document-centric solutions focusing
on the presentation and implementation aspects of Web and multimedia applications. Second,
it gave a summary of existing model-based design methods and methodologies aimed at
the high-level specification of different design concerns involved in Web applications. In
both cases, an important focus was put on the question whether (and how) the examined
solutions support different kinds of adaptation, such as personalization, device and/or context
dependency, etc.

The analysis of component-based and document-centric approaches has shown that there
is a need for formats that abstract from the current coarse-grained implementation model
of the WWW, thus facilitating to compose Web applications from fine-grained, declarative,
reusable, and configurable implementation entities. In combination with an appropriate vi-
sual authoring tool, such a solution can be efficiently utilized in different application scenarios:
from traditional hypermedia systems to more specialized multimedia (e.g. three-dimensional)
or e-Learning applications. However, there is still a lack of approaches that explicitly focus on
a clear separation of application concerns in different component types or levels. Moreoever,
current declarative component models do not support the adaptation of reusable declarative
implementation entities to different users, devices, and contexts in a component-based man-
ner, nor do they provide an automatic presentation generation facility to various Web output
formats. Furthermore, only a few of the mentioned solutions provide visual authoring tools
that would support authors to proceed in an intuitive way based on a structured authoring
process. Note that a detailed comparison of the approaches investigated in this thesis was
already provided in Section 3.2.10.

On the other hand, the main strength of model-based design approaches is their support
for the high-level design of Web applications in a structured and disciplined way. Based on the
principle of separation of concerns, they facilitate to address a number of independent design
issues and to express them in form of implementation independent high-level models. While
there exist different formalisms and notations to express those models (e.g. UML, XML, RDF,
etc.), an emerging trend is the application of Semantic Web languages for this purpose. The
advantage of such approaches is a more explicit description of application semantics, resulting
in better interoperability and (possibly) model verification support, as well as the possibility
to integrate data (models) from different ontologies and sources. As discussed above, some
of the existing methodologies provide support for selected kinds of adaptation, mostly at
navigational design. Still, important adaptation issues, such as content-level adaptation (e.g.
media adaptation) or (dynamic) adaptation at presentation design have not been sufficiently
addressed, yet. In general, the explicit design support offered for the presentation aspects of a
Web application is often neglected, as “most of the methodologies refer to templates (for ex-
ample XSL templates) that describe the styling information of the systems” [Frasincar 2005].
Furthermore, even though some methodologies provide a (semi-)automatic code generation,
fine-granular design artefacts get often lost during the implementation phase while being
transformed to the current coarse-grained Web implementation model.

Finally, according to our best knowledge, there has been only one attempt to combine
the benefits of Web design models with the advantages of component-based reuse at imple-
mentation level. As discussed in Section 3.3.2, that approach of Segor and Gaedke aimed
at offering a number of heuristic implementation rules to map OOHDM design models to
WCML components [Segor and Gaedke 2000]. However, neither was an automatic mapping

64 c© Copyright TU Dresden, Zoltán Fiala

3.4. Discussion

process achieved, nor were any kinds of hypermedia adaptation considered. Inspired by the
component-based approaches presented in Section 3.2, the next chapters of this thesis will
present a component-oriented document model as well as a corresponding visual authoring
tool for adaptive Web applications. Furthermore, it will be also shown how an implementa-
tion based on this component-based format can be automatically generated from high-level
design model specifications, thus adding automation to the overall process of design and
implementation.

c© Copyright TU Dresden, Zoltán Fiala 65

Chapter 3. Development of Adaptive Web Applications: State of the Art

66 c© Copyright TU Dresden, Zoltán Fiala

