
Developing Component-based Adaptive Web Applications with the
AMACONTBuilder

Zoltán Fiala, Michael Hinz, Klaus Meissner
Dresden University of Technology

Heinz-Nixdorf Endowed Chair for Multimedia Technology
D-01062 Dresden, Germany

{zoltan.fiala, michael.hinz, kmeiss}@inf.tu-dresden.de

Abstract

The growing need for personalization and device in-
dependence calls for effective ways of engineering adap-
tive Web applications. This requires formats, languages
and structured process models that allow developers to de-
sign and express adaptation, but also appropriate author-
ing tools. Still, current Web authoring tools do not pro-
vide sufficient adaptation support. Recently, the AMACONT
project introduced a component-based document format
aiming at efficiently composing adaptive Web applications
from reusable Web components. This paper focuses on the
development of such applications and presents a visual au-
thoring tool called AMACONTBuilder. Based on a struc-
tured authoring process it is shown how it can be utilized
for effectively creating AMACONT applications.

1. Introduction

The WWW’s evolution to a ubiquitous medium offering
personalized dynamic information calls for new ways of ef-
fectively engineering adaptive Web applications. Still, cur-
rent document formats (XHTML, cHTML, WML etc.) are
hardly suitable for this purpose. The main reason for this
is the missing separation of concerns (such as content, lay-
out, navigation) as well as the lack of mechanisms for ex-
pressing adaptation in a generic way.

To address this problem, the AMACONT project intro-
duced a component-based XML document format [5] that
enables to compose adaptive Web applications by the ag-
gregation and linkage of reusable document components.
Furthermore, a modular document generation architecture
for dynamically adjusting adaptable components to differ-
ent user preferences, client devices and Web formats was
developed.

Since the development of component-based adap-
tive Web applications is a complex challenge, it has to be

based on a structured authoring process considering dif-
ferent aspects of adaptation. In recent work we adopted
the model-driven Hera design methodology for this pur-
pose [6, 4]. Still, the utilization of intuitive graphical
development tools is crucial for the success of the over-
all authoring process. Therefore, this paper introduces the
AMACONTBuilder, a visual authoring framework for the
efficient creation of component-based adaptive Web appli-
cations.

The paper is structured as follows. After addressing re-
lated work in Section 2, the document model of AMA-
CONT (Section 3) as well as the main concepts and
the overall architecture of the AMACONTBuilder are de-
scribed (Section 4). Then, Section 5 describes the structured
development process of component-based adaptive Web ap-
plications with the aid of the AMACONTBuilder in detail.
Finally, Section 6 illustrates the stepwise publishing pro-
cess of the resulting Web presentations.

2. Related Work

Recently, different tools for authoring adaptive hyperme-
dia and Web applications have been developed. As a signif-
icant approach we mention the AHA! [1] software platform
that provides a reference implementation of the AHAM ref-
erence model [2]. Based on Java applets, it provides graph-
ical tools for defining high-level concepts, concept relation-
ships and adaptation rules. However, as AHA! allows only
for authoring on the conceptual level, there is no support for
creating Web resources (e.g. media elements or page frag-
ments) assigned to concepts. Furthermore, AHA! does not
allow for developing data-driven adaptive Web applications.

Another important group of visual Web engineering soft-
ware solutions are CASE tools aiming at modeling data-
driven Web Information Systems (WISs [11]). They are
based on structured design methodologies that typically dis-
tinguish between theconceptual, navigationalandpresen-
tation modelof a Web application. As prominent examples

E-Learning Course

Media
Components

Document
Components

Chapter 2

Content Unit

Image with

textual

explanation

Content Unit

Components

Hyperlinks

Content Unit

Image with

audio

explanation

Content Unit

...

Overview

Chapter 1

Fact

Example

Text
Text

Text
Video

Text
Style-

sheetText
Image

Text
Media

...

Introduction

Hyperlink

Aggregation

Figure 1. The Document Model.

we mention WebRatio (based on the modeling language
WebML [3]), VisualWade (based on the OO-H method [7]),
ArgoUWE (based on the UWE methodology [13]) and the
HPG tool [14] of the Hera specification framework [15].
Since Web Information Systems provide a hypermedia view
on highly-structured dynamic data sources, these modeling
tools operate on the schema view of the input data and spec-
ify WISs in terms ofabstractconcept, navigation and user
interface elements. The creation and configuration of con-
crete content assets is out of their scope. Furthermore, there
is insufficient support for the visual configuration of the
adaptive behavior of Web site components, yet.

The AMACONTBuilder presented in this paper follows
a different approach. Firstly, it supports the visual develop-
ment of adaptive Web presentations on the instance level.
Furthermore, by utilizing the “programming by example
(PBE)” paradigm it also allows for generalizing authoring
operations performed on instances for data-driven AMA-
CONT component templates, thus allowing for authoring
data-driven adaptive Web presentations. Moreover, a main
focus is on the visual configuration of adaptation in differ-
ent stages of the authoring process.

3. AMACONT Component Architecture

The component-based document format of AMACONT
[5] allows to build device-independent Web applications
by aggregating and linking configurable document com-
ponents. These are documents or document fragments, in-
stances of an XML-grammar representing adaptable content
on different abstraction levels (see Figure 1).

On the lowest level there aremedia componentsencap-
sulating concrete media assets. These comprise text, struc-
tured text (e.g. HTML), images, sound, video, Java applets
etc. The second level combines media components belong-
ing together semantically - e.g. an image with a textual de-
scription - into so calledcontent unit components. Defining

such collections is a key factor of reuse. The spatial adjust-
ment of contained media components is described by client-
independent layout properties (see Section 3.2). Thirdly,
document componentsare specified as parts of Web pre-
sentations playing a well-defined semantic role (e.g. a news
column, a product presentation or even a Web site). They
can either reference content units, or aggregate other doc-
ument components. The resulting hierarchy describing the
logical structure of a Web site is strongly dependent on the
application context. Finally, the orthogonal hyperlink view
defines links spanned over all component levels. Uni- and
bidirectional typed hyperlinks based on the standards XPath
and XPointer are supported.

3.1. Describing Adaptive Behavior

To define adaptive behavior in a generic way, each com-
ponent may include a number of variations. As an exam-
ple, the definition of an image component might include (in
its body) two variants for color and monochrome displays.
The decision, which alternative is selected, is made during
document generation according to a selection method con-
tained in the component’s header. Such selection methods
are chosen by component authors and can represent arbitrar-
ily complex conditional expressions parameterized by user
model parameters. The XML-grammar for selection meth-
ods allows the declaration of user model parameters, con-
stants, variables, and operators, as well as complex condi-
tional expressions of arbitrary complexity [5]. A concrete
example for defining such selection methods will be shown
in Section 5.1.

3.2. Layout Adaptation

As already mentioned, the document format al-
lows to describe the spatial adjustment of components by
client-independent layout properties. Inspired by the lay-
out manager mechanism of the Java language, they
describe a size and client-independent layout allow-
ing to abstract from the exact resolution of the dis-
play or the browser’s window. The exact rendering of
media objects is done by XSLT stylesheets transform-
ing these abstract layout descriptions into concrete output
formats. At current time four layout managers are de-
fined: BoxLayout, BorderLayout, OverlayLayout

and GridLayout. A number of stylesheets for automati-
cally converting such descriptions to different Web formats
were developed. For more details on AMACONT’s lay-
out managers the reader is referred to [4].

3.3. Document Component Templates

The document components introduced above are static,
i.e. they represent a concrete piece of Web content, such as a
specific instance of an image (media component) or a chap-
ter in an eLearning course (document component). Still, in
order to provide support for data-driven Web applications,
like online-shops, e-galleries etc., there is a need for creat-
ing components on the fly from dynamic data sources. For
this reason so calleddocument component templateshave
been developed [6]. These are component skeletons declar-
ing the structural, behavioral and layout aspects of compo-
nents independent of their concrete content. They are in-
stantiated by being filled with media instances dynamically
queried (retrieved) from a data source.

4. AMACONTBuilder: Main architecture

The AMACONTBuilder was implemented in Java and is
a modular authoring tool allowing for creating and editing
arbitrary XML documents. It is based on a generic frame-
work that can be extended by graphical editor plug-ins for
visually authoring specific types of XML content.

In order to provide programmatic access to all kinds of
XML data, the AMACONTBuilder utilizes a flexible inter-
nal object model which is based on JDOM. This generic
object model was extended by AMACONT specific classes
providing an API for efficiently manipulating adaptive Web
components. That is to say, AMACONT documents are
parsed into a hierarchy of component specific objects when
they are opened by the AMACONTBuilder. As an exam-
ple, the developer of an editor plug-in for image compo-
nents can utilize predefined Java methods for getting and
setting image metadata, for creating image component vari-
ants and selection methods etc.

Note that the utilization of such an object model has dif-
ferent advantages. Firstly, plug-in programmers can use a
high-level API for manipulating AMACONT components
and do not have to bother about their concrete underlying
XML-based format. Secondly, this solution provides also
more robustness regarding to modifications of the under-
lying XML languages. During the evolution of the AMA-
CONT project different changes to the component model’s
XML-based description language have been made, espe-
cially in order to provide less redundant descriptions and
better performance in the document generation process.
Still, as the plug-ins of the AMACONTBuilder work on an
internal object model, it was enough to adjust the mappings
between that model and the XML-based formats, not need-
ing to modify the application logic of specific plug-ins.

As shown in Figure 2, the user interface of the AMA-
CONTBuilder consists of different parts. Theapplication
frameprovides generic functionality for configuration op-

Figure 2. AMACONTBuilder.

tions as well as for file and object model management. It
is responsible for parsing XML files into the internal ob-
ject model, for assigning editor plug-ins to parts of it, and
for serializing the modifed object model to XML, respec-
tively.

The navigation frameon the left provides a tree-based
view on the node (component) structure of the currently
edited XML document. When navigating through these
components, the editors assigned to the appropriate com-
ponent types are activated in the editor frame. Note that dif-
ferent filters have been implemented for the navigation tree.
For instance, authors have the possibility to see only im-
age components.

Finally, theeditor frame(on the right) provides space
for the actual editor plug-ins associated to different node
(or component) types1. The assignment of editors to node
(component) types is determined by an XML-based config-
uration file. Whenever there are several editors assigned toa
given component type, they are arranged by different tabbed
panes in the editor frame.

Whereas there are editor modules that are applicable to
all kinds of XML content (e.g. the XML code editor shown
in Figure 2), most modules are assigned only to specific
node (component) types and thus activated at well-defined
phases of the overall authoring process. The structured de-
velopment process of component-based adaptive Web ap-
plications aided by the AMACONTBuilder is described in
the following section.

1 Such plug-ins can be implemented by inheriting from the plugin class
de.tudresden.inf.amacont.plugins.AbstractEditor.

5. Development with the AMACONTBuilder

The development of component-based adaptive Web ap-
plications is a complex process that has to be based on struc-
tured process models. In previous work [6] we adopted the
Hera design methodology for this task, furthermore, we also
showed how existing high-level Hera design artefacts can
be automatically transformed to a component-based AMA-
CONT implementation [4]. In this section we concentrate
on the development of component-based adaptive Web ap-
plications “from scratch” and illustrate how the AMACON-
TBuilder can be used to systematically create AMACONT
applications based on a structured authoring process.

Our running example is a dynamic Web presentation pro-
viding information about our research group’s members. It
is part of an AMACONT application presenting our fac-
ulty’s media informaticsstudy program. Research members
are presented by their attributes, e.g. their names, contacts,
CVs, pictures as well as links to separate pages presenting
their publications. To support personalization and device-
independence different adaptations are provided.

5.1. Content Authoring

The first step of the authoring process focuses on creat-
ing content elements to be presented in the resulting Web
application [6]. This implies to create concrete content ele-
ments (text, image, audio components etc.) or to define and
set up a structured data source from which content elements
can be retrieved. Since there exist efficient tools for mod-
eling application domains and creating corresponding data
schemas, the AMACONTBuilder focuses on the creation of
media components or media component templates.

For this purpose different visual media component ed-
itors (text editor, image editor, video editor, audio editor
and CSS editor) have been created. Instancing our research
group’s logo, Figure 3 presents the image editor allowing
to upload images in different formats, to edit their proper-
ties in a visual way and to save them as image components.
The size of an image can be altered either by mouse drag-
ging or by setting the explicit pixel values by input fields.

There are different adaptation issues to be considered at
content authoring. Firstly, it is necessary to create content
alternatives with different media quality [6]. For instance,
in a device independent Web presentation it is necessary to
provide different instances of a certain picture with vari-
able size, color depth or resolution in order to automatically
adapt to various display types. Another important content
adaptation aspect is internationalization. Depending on the
nationality of the targeted audience the content assets have
to be available in different languages.

Therefore, the content editors were extended with
generic mechanisms for creating content alternatives. For

Figure 3. Image Editor.

instance, in the image editor it is possible to provide an al-
ternative text for browsers that are not able to present im-
ages. Furthermore, image variants with different quality
alternatives can be added, too. Such variants can be cre-
ated in three ways: by uploading alternative images, by
resizing the current image and save it as a new vari-
ant or by generating new images automatically. In the latter
case the author can predefine the properties (e.g. pixel size,
color depth, image format) of an arbitrary number of vari-
ants to be created. According to his configuration, the al-
ternative media instances are generated automatically. This
feature was implemented by using the Java API of Im-
ageMagick [10].

After creating content alternatives, authors can attachap-
pearance conditionsto them in order to specify under which
circumstances they should be included in the generated pre-
sentation. These are Boolean conditions referencing param-
eters from the context model which is based on CC/PP [12].
As shown in Figure 4, authors can visually navigate through
the hierarchy of profiles, choose the appropriate parameters
and insert them into appearance rules. The example declares
to use the current picture only for browsers with at least 8
bits per pixel color depth and more than 400 px horizon-
tal resolution. Following code snippet illustrates the result-
ing XML-based selection method (see Section 3.1).

<aada:Expr>
<aada:Term type="and">

<aada:Term type="lt">
<aada:UP>ScreenSizeX</aada:UP>
<aada:Const>400</aada:Const>

</aada:Term>
<aada:Term type="lt">

<aada:UP>BitsperPixel</aada:UP>
<aada:Const>8</aada:Const>

</aada:Term>

Figure 4. Defining Appearance Conditions.

</aada:Term>
</aada:Expr>

The mechanisms described above aim at author-
ing adaptable content instances. Still, in order to sup-
port for data-intensive Web applications, the editor tools
can be switched from this “instance mode” to the so called
“template mode”. As an example, while the logo de-
picted in Figure 3 is an image component instance be-
ing the same on all generated pages, the image presenting
the currently visited research member’s photo is dy-
namic and has to be realized as a component template.
Therefore, the image editor can be connected to a dy-
namic data source by a query selecting images and their
attributes. Consequently, the resulting code is a compo-
nent skeleton that can be filled with dynamically retrieved
images on-the-fly. The user of the image editor has the pos-
sibility to navigate through the result set delivered by
the query and to perform modifications both on in-
stance and template level. Firstly, he can edit the currently
selected instances so that the altered attributes are writ-
ten back to the connected database. Secondly, he can also
do changes on template level by e.g. assigning an alter-
native data source containing the PDA variants of our
research members’ photos and defining a corresponding se-
lection rule.

5.2. Hypertext Authoring

Hypertext authoring (or navigation authoring) aims at
describing the logical, structural and navigational aspects of
component-based adaptive Web applications [6]. The con-
tent assets (or templates) created in the content authoring
step are combined to content units or document compo-
nents (or their corresponding templates). Components can
be both recursively aggregated (i.e. include other compo-
nents) and connected via hyperlinks. Still, note that during
hypertext authoring only the nesting hierarchy of compo-

Figure 5. Structure Editor.

nents is determined, their visual arrangement is specified in
a later step.

For visually creating component hierarchies thestruc-
ture editorwas created (see Figure 5). The available con-
tent components (or templates) shown on the bottom of the
editor tool can be easily aggregated to hierarchies by sim-
ple “Drag&Drop” mechanisms. As depicted in Figure 5, a
document component describing research members is put
together from several subcomponents: the logo of our re-
search group, the group member’s name, picture, contacts
and CV. Note that hyperlinks can be authored as specific
content elements.

By double-clicking on a component in the structure ed-
itor the appropriate editors assigned to the chosen subcom-
ponent are automatically activated. For instance, by activat-
ing the picture depicted on the left of the component struc-
ture edited in Figure 5, the image editor shown in Figure 3
is invoked in a modal editor window.

As a matter of course, the structure editor can be
switched to template mode, too. What is more, it can ag-
gregate both static component instances as well as dynamic
component templates. In Figure 5 the textual descrip-
tion and the image describing research group members
are dynamic templates, i.e. different for each member in-
stance. On the other hand, the logo of our research group is
constant for all members and is therefore a component in-
stance.

Adaptation plays a very important role during hyper-
text authoring, too. According to varying characteristicsand
(even dynamically changing) preferences of users and their

client devices, different component and hyperlink struc-
tures are conceivable. Firstly, it is meaningful to adapt the
coarse navigational structure by defining variants of docu-
ment components providing different views on the underly-
ing content. Secondly, the population of each specified com-
ponent with content assets can be personalized, too. Ac-
cording to the media preferences and/or devices capabili-
ties of different users, different media types for presenting
the same concept can be utilized. As an example, take the
case of two users, one of them preferring multimedia con-
tent, the other rather textual information. Whereas the first
one could be shown a video or audio sequence about a re-
search member’s CV, the second one should be provided
with a detailed textual description.

Similar to content authoring, adaptation at hypertext au-
thoring can be specified by defining alternative component
structures and selection methods. Users can create alter-
native component structures either from scratch or just do
some modifications to an existing structure and save the
changed version as a variant. Since the definition of vari-
ants and appearance rules was implemented as a generic ser-
vice provided by all AMACONT editor modules, the same
mechanisms as described in Section 5.1 can be utilized.

5.3. Presentation Authoring

Presentation authoring aims at declaring the “look-and-
feel” of a Web application independent from its implemen-
tation [6]. Complementary to hypertext authoring, where
the developer is concerned with organizing the overall pre-
sentation structure, presentation authoring specifies how
components should be displayed. Moreover, the corporate
design of the resulting Web application (determined by lay-
out elements such as font sizes, logos, buttons, background
images etc.) is also defined in this step. Therefore, two spe-
cific editor modules, the layout editor and the CSS editor,
have been developed.

As mentioned in Section 3.2, the component-baseddocu-
ment format provides an XML-based layout manager mech-
anism for specifying the spatial adjustment of subcompo-
nents within their container components in a size and client-
independent way. The layout editor shown in Figure 6 al-
lows to attach such layout managers to components and
to visually configure their attributes. Layout managers are
visualized as a grid that can be filled by icons represent-
ing subcomponents. Various “Drag&Drop” techniques have
been realized in order to perform most operations graphi-
cally, such as resizing the grid, placing subcomponents into
grid cells, changing their alignment etc. Besides, variousin-
put fields for fine-tuning all layout attributes can be found
on the right editor pane. Furthermore, a preview function
for XHTML was developed, too.

Figure 6. Layout Editor.

Figure 6 depicts the layout of our running example de-
signed for a PDA. The content pieces describing research
members are arranged in a verticalBoxLayout. Even though
the figure depicts a “research member instance”, the result-
ing component is saved as a dynamic template.

On the other hand the CSS editor aims at defining the
design of the resulting application. It is a simple author-
ing module allowing for loading CSS files as well as for
maintaining their style definition entries. The resulting def-
initions are stored as AMACONT CSS components.

Adaptation at presentation authoring focuses on the spa-
tial adjustment of layout elements. Depending on the screen
size, the supported document formats and interaction tech-
niques provided by different client devices, these presen-
tation components should be displayed variably. As an ex-
ample, consider ourBoxLayoutdefined for PDAs (see Fig-
ure 6). For a desktop PC with a bigger horizontal resolu-
tion a “nicer” BorderLayoutis used. A further adaptation
target is the corporate design (the look and feel) of the
Web presentation. As an example, in an online shop it is
usual to provide varying design variants according to dif-
ferent user properties (age, education, interests, visualim-
pairments etc.) but also according to external parameters
(seasons, events, anniversaries etc.). For a more detailedde-
scription of possible adaptation issues at presentation au-
thoring the reader is referred to [4].

Note that the specification of adaptation issues is again
based on the definition of alternatives and corresponding se-
lection methods.

6. Publishing Process

Document generation is based on a stepwise pipeline
concept (see Figure 7). The inputs of the document genera-

Request

Pipeline-based Document Generation

Transform
adaptation

to context

model
properties

Rendering
XHTML.full

XHTML.basic

XHTML.MP
WML

Transform
adaptation

according to

user
preferences

 </alay:LayoutManager>
 </amet:LayoutProperties>
</aco:MetaInformation>
<aco:Variants>
 <aco:Variant name="variant1" layer="ContentUnit"
 <aco:MetaInformation>
 <amet:LayoutProperties>
 <alay:LayoutManager>
 <alay:OverlayLayout>
 <alay:ComponentRef pos
 <alay:ComponentRef pos
 </alay:OverlayLayout>
 </alay:LayoutManager>
 </amet:LayoutProperties>
 </aco:MetaInformation>
 <aco:SubComponents>
 <aco:AmaImageComponent name="Titel
 <aco:MetaInformation>
 <amet:MetaData type="mediu
 <amet:MetaData type="mediu
 Opel Fontera
 </amet:MetaData>
 </aco:MetaInformation>

Component

Repository

Input Doc.
contains all

variants and

adaptation
options

Context Model

Location Profile User ProfileDevice Profile

updateupdate

Context Modeling

Location
Modeling

User
Interactions

Device Modeling

Device Properties
(UAProf)

User Modeling

Figure 7. Publishing Process.

tor are complex document components or templates created
by the AMACONTBuilder that encapsulate all possibilities
concerning their content, layout, and structure. According
to the context model (which is stored on the server accord-
ing to the CC/PP [12] standard), they are subdued to a se-
ries of Java and XSLT transformations, each considering a
certain adaptation aspect by the configuration and selection
of component variants. The document generation architec-
ture of AMACONT is based on the XML publishing frame-
work Cocoon [16]. It provides generic mechanisms for ac-
quiring and processing context information [9], thus allow-
ing to dynamically react on the user’s navigation and inter-
action behavior. For further information on our system ar-
chitecture the reader is referred to [8].

7. Conclusion and Future Work

The development of component-based adaptive Web ap-
plications is a complex challenge that has to be based
on a structured authoring process aided by visual author-
ing tools. Therefore, this paper presented the AMACONT-
Builder, a visual authoring tool for creating adaptive Web
components. The main architecture of the AMACONT-
Builder was presented, and the development process of
adaptive Web applications with its aid was explained. Fi-
nally, the publication process of the resulting implementa-
tion artefacts was illustrated.

Ongoing work on the AMACONTBuilder aims at imple-
menting new editor modules, especially for the visual au-
thoring of adaptable hyperlink structures as well as for the
definition of interaction elements on the basis of the W3C
XForms standard. Furthermore, as the formats and the gen-
eration architecture of AMACONT support generic means
for acquiring and processing context information and user
interactions [9], new means of visually configuring this dy-
namic behavior of component-based adaptive Web applica-
tions will be designed and implemented.

References

[1] P. D. Bra, A. Aerts, D. Smits, and N. Stash. Aha! ver-
sion 2.0, more adaptation flexibility for authors. InAACE
ELearn’2002 conference, pages 240–246, 2002.

[2] P. D. Bra, G. J. Houben, and H. Wu. AHAM: A dexter-based
reference model for adaptive hypermedia. In10th ACM Con-
ference on Hypertext and Hypermedia (HYPERTEXT ’99),
Darmstadt, Germany, pages 147–156. ACM, 1999.

[3] S. Ceri, P. Fraternali, and A. Bongio. Web modeling lan-
guage (WebML): a modeling language for designing web
sites. In9th International Conference on the World Wide
Web (WWW9), Amsterdam, 2000.

[4] Z. Fiala, F. Frasincar, M. Hinz, G.-J. Houben, P. Barna, and
K. Meissner. Engineering the presentation layer of adapt-
able web information systems. InFourth International Con-
ference on Web Engineering (ICWE2004), Munich, 2004.

[5] Z. Fiala, M. Hinz, K. Meiner, and F. Wehner. A component-
based approach for adaptive dynamic web documents.Jour-
nal of Web Engineering, Rinton Press, 2(1&2):058–073,
September 2003.

[6] Z. Fiala, G.-J. Houben, M. Hinz, and F. Frasincar. Designand
implementation of component-based adaptive web applica-
tions. In19th Symposium on Applied Computing (SAC2004),
Nicosia, Cyprus, 2004.

[7] J. Gomez and C. Cachero.OO-H Method: extending UML to
model web interfaces, pages 144–173. Idea Group Publish-
ing, 2003.

[8] M. Hinz and Z. Fiala. Amacont: A system architecture for
adaptive multimedia web applications. InWorkshop XML
Technologien fuer das Semantic Web (XSW 2004), 2004.

[9] M. Hinz and Z. Fiala. Context modeling for device- and loca-
tion aware mobile web applicationss. InWorkshop on Perva-
sive Mobile Interaction Devices (PERMID 2005) - Mobile
Devices as Pervasive User Interfaces and Interaction De-
vices , Munich, Germany, 2005.

[10] http://www.imagemagick.org.ImageMagick project, 2005.
[11] T. Isakowitz, M. Bieber, and F. Vitali. Web informationsys-

tems - introduction.Communications of the ACM, 41(7):78–
80, 1998.

[12] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm,
M. Butler, and L. Tran. Composite Capability/Preference
Profiles (CC/PP): Structure and Vocabularies. W3C Work-
ing Draft, 2003.

[13] N. Koch, A. Kraus, and R. Hennicker. The authoring pro-
cess of the uml-based web engineering approach. InFirst
International Workshop on Web-Oriented Software Technol-
ogy, 2001.

[14] B. Rutten, F. Frasincar, G. J. Houben, and R. Vdovjak. Hpg:
a tool for presentation generation in wis. InWWW (Alternate
Track and Posters) 2004, pages 242–243, 2004.

[15] R. Vdovjak, F. Frasincar, G. J. Houben, and P. Barna. Engi-
neering semantic web information systems in Hera.Journal
of Web Engineering, Rinton Press, 2(1&2):003–026, 2003.

[16] C. Ziegeler and M. Langham.Cocoon: BuildingXML Ap-
plications. New Riders, 2002.

