
Distribution and Synchronization of Context Modeling
Mechanisms between Servers and Clients on the Web

Michael Hinz Zoltán Fiala

Dresden University of Technology, Department of Computer Science
Heinz-Nixdorf Endowed Chair for Multimedia Technology

D-01062, Germany, +49-351-463-38516
{michael.hinz, zoltan.fiala}@inf.tu-dresden.de

Abstract—The on-the-fly generation of personalized
context aware Web applications is very time consuming
and causes an enormous server load. For this reason, such
applications are still restricted to specific application
domains. To meet this challenge, this paper proposes a
novel component-based approach for dynamically
distributing server load to clients. Server tasks like context
modeling algorithms are transferred and carried out on
end devices. A distribution manager was developed to
decide whether a task can be performed on the client. This
is done by monitoring components observing current client
capabilities and system states of the Web server.
Furthermore, mechanisms for synchronizing context
models between servers and clients are provided. Proving
feasibility the paper demonstrates the distribution of a
user modeling mechanism based on a prototype.

Key words: distribution, synchronizing, context
awareness, adaptive architectures

1. INTRODUCTION

Today more and more (mobile) devices with
heterogeneous capabilities are getting access to the
WWW. Other trends like Location Based Services and
personalization of Web contents require adaptation
mechanisms taking various context data into account.
Therefore, modern ubiquitous Web systems have to deal
with varying context information in order to support
context awareness. Accomplishing this requirement
necessitates gathering, processing and representing
context information, so that it can be used for the
adaptation. Web pages have to be generated
dynamically according to the context that can change
during each Web page request. Assuming many users
performing requests simultaneously, the modeling of
context and the reiterative online generation produces
an enormous server load. Reducing this server load is
one of the key factors for the commercial success of
context aware systems.
For that purpose several strategies (mostly caching
mechanisms) exist which can be divided into a few main
categories. Some of the approaches concentrate on the

caching of dynamically generated content [1] on the
server side ([2], [3]). Still, dynamically generated
adaptive Web pages are highly dependent on the context
in order to support personalization, device independence
and context awareness. Therefore, the hit ratio of those
caches is very low [1].
Other strategies focus on caching dynamic content on
proxies. Interesting approaches are proposed by [4] and
[5] which cache dynamic/active content by migrating
the content generating scripts and the data used by them
from the server to proxies close to the clients. However,
though the latency caused by the backbone delay could
be reduced, the hit ratio problem was not solved but
only shifted to the proxy server.
Other methods for reducing server load distribute user
requests to different servers by using load balancing and
clustering mechanisms [6] and [7]. Furthermore, there
has been done some work in the area of adaptable
software architectures [8].
In this paper we propose a distribution mechanism that
can be effectively used to reduce server load by shifting
system components (e.g. modeling components and
content generation components) of a context aware Web
architecture to the client. Furthermore, a mechanism for
the synchronization of the context data between the
server and the client is presented. Thus we provide an
adaptable context aware Web system architecture that
dynamically adjusts itself to changing server load.

2. CONTEXT AWARE WEB ARCHITECTURES

Context aware Web systems dealing with different
context information have a more complex architecture
than conventionally Web systems. On the basis of the
AMACONT system architecture [9] Figure 1 shows the
general structure of such an architecture, consisting of
several components for modeling context information
and representing it in a context model. According to this
context model document generation components adapt
the requested Web document. Thus, personalized and
location aware Web applications can be generated for
the ubiquitous Web.

In this paper we want to show how complex modeling
tasks and parts of the dynamic document generation can
be transferred to the client side in order to reduce server
load. As an example we choose a personalization
mechanism. Aim of this mechanism is to allow users to
interact with media components contained in a Web
page, to automatically derive user preferences from
those interactions and to dynamically update the
resulting Web presentation according to these
preferences. For this purpose user interactions are
tracked on the client device and sent to the server. On
the server a user modeling component calculates user
preference rules and updates the user profile of the
context model (see Figure 1, right components in the
boxes “Context Modeling” and “Context Model”).
Based on that profile the requested Web documents can
be adapted, respectively (Figure 1, middle component of
the document generation). To guarantee the best
adaptation these processes are performed whenever the
user is requesting a new Web page.
In general this is not only a problem of this specific user
modeling mechanism but of all context aware systems.
In order to achieve the best QoS properties the
generated Web documents have to be recalculated
whenever the context (e.g. location of the user, device
properties, environmental properties) changes. This
causes server load and reduces the overall system
performance and therefore the response time of the
server.

Pipeline-based Document Generation

Context Model

Context Modeling

Request

Transform
adaptation
to context
model
properties

Rendering
XHTML.full
XHTML.basic
XHTML.MP
WML

 </alay:LayoutManage
 </amet:LayoutProperties>
< /aco:MetaInformation>
< aco:Variants>
 < "vaaco:Variant ri name= a
 <aco:MetaInformation
 <amet:LayoutPro
 <alay:Layou
 <alay:O
 <a
 <a
 </alay:
 </alay:Layo
 </amet:LayoutPr
 </aco:MetaInformatio
 <aco:SubComponent
 <aco:AmaImage
 <aco:MetaIn
 <amet:
 <amet:
 <b
 </amet
 </aco:Meta

Component
Repository

Location
Profile

Device
Profile

Update

Location
Modeling

User Interactions

Device
Modeling

Device Properties / UAProf

Adaptation

Amacont Server Client Device

User
Profile

User
Modeling

Transform
adaptation
according to
user
preferences

Figure 1: General Structure of a Context Aware Web
System Architecture

3. ENHANCING PERFORMANCE BY
DISTRIBUTING AND OMITING SERVER

TASKS

Figure 1 shows that the general structure of a context
aware Web system architecture consists of a set of
different components (e.g. modeling and transformation
components). Some of them like the rendering to the
concrete output format have to be processed each time
the user requests a document. Others (e.g. user

modeling) that are only improving the quality of the
generated document/presentation are optional.
In order to reduce server load one possibility is to
process optional tasks only if there are enough server
resources available. Another solution is the
establishment of a distribution mechanism that shifts
components to the client device if it has the capabilities
to process those components. Both mechanisms can be
effectively used to reduce server load (see Section 4).
For that purpose different requirements have to be
considered:
For enabling a decision if there are enough server
resources available or if the client has the capabilities to
execute a component, states of the overall system have
to be monitored. Moreover, descriptions of the
components’ requirements (Which resources are
needed? Are there alternative implementations of the
component?) and their necessities (optional or
mandatory?) are needed. Furthermore, rules for the
distribution or omitting of components have to be
specified. Based on that specification the system can
react on changing system states by adapting its
structure/architecture.
To put those requirements into practice, Figure 1 shows
again the general structure of a context aware Web
system extended by a distribution mechanism. This
mechanism enables to monitor states of the server and to
acquire device capabilities. According to this
information distribution actions are triggered that shift
server load to the client device. Note that the shifting of
server components can only be done when all
underlying data is available on the client side.
As an example Figure 2 (see the dotted areas) illustrates
the distribution of the user modeling mechanism. This
means that the components “User Modeling”, “User
Profile” and the corresponding transformer can be
performed either on the server or on a capable client
device.

3.1. Monitoring System States

As already mentioned, monitoring the state of the
system is a key factor for performing distribution
mechanisms. If components should distribute to the
client device, monitoring only states of the server is not
sufficient, i.e. the client device’s capabilities have also
to be captured in order to detect whether it has the
resources to execute the components.
In Figure 2 a monitoring manager is shown that
provides a plug-in mechanism for different monitoring
components. Furthermore, it offers a common interface
for retrieving system states to the distribution manager
component (see Section 3.2). The next sections (3.1.1
and 3.1.2) describe the functionality of two monitoring
components by an example.

Pipeline-based Document Generation

Context Model

Context Modeling

Distribution

Request

Transform
adaptation
to context
model
properties

Rendering
XHTML.full
XHTML.basic
XHTML.MP
WML

 </alay:LayoutManage
 </ >amet:LayoutProperties
</ > aco:MetaInformation
< > aco:Variants
 < ="vaaco:Variant ri name a
 <aco:MetaInformation
 <amet:LayoutPro
 <alay:Layou
 <alay:O
 <a
 <a
 </alay:
 </alay:Layo
 </amet:LayoutPr
 </aco:MetaInformatio
 <aco:SubComponent
 <aco:AmaImage
 <aco:MetaIn
 <amet:
 <amet:
 <b
 </amet
 </aco:Meta

Component
Repository

Location
Profile

Device
Profile

Update

Location
Modeling

User Interactions

Device
Modeling

Device Properties / UAProf

Adaptation

Amacont Server Client Device

Monitoring
Manager

Monitoring
Component

User
Profile

User
Modeling

Transform
adaptation
according to
user
preferences

Transform
adaptation
according to
user
preferences

User
Profile

User
Modeling

Synchronization

Distribution
Manager

Figure 2: Extended System Architecture Supporting Distribution of Server Tasks (Example: User Modeling)

3.1.1. Measuring System Server Load

In order to find out whether server tasks should be
omitted or executed on the client, mechanisms for
monitoring the server load are required. This is e.g.
possible by a monitoring component that measures the
processor time consumption of the server system. Due
to the high variability of the current time consumption
this has to be done for a period of time to assure reliable
values. Another possibility is to count the number of
server requests during a specific time period. This
concept does not give a direct statement about the server
load but gives an indicator that can be mapped to former
behavior patterns.

3.1.2. Measuring Device Capabilities

To acquire device capabilities several strategies exist.
The most popular method is to analyze the HTTP user-
agent parameter that comes with the HTTP request and
map this parameter to a device or browser repository on
the server side. However, this works only for a few
nearly static device properties. The usage of the User
Agent Profile specification (UAProf [10]) which is
based on the CC/PP framework [11] establishes a more
effective mechanism for gathering dynamically
changing device properties on the server by analyzing
UAProf enabled requests. Unfortunately, this

specification only provides a common vocabulary for
WAP devices. Still, most of the vocabulary can be
adopted for other non WAP devices like e.g. Web
browsers on desktop computers, notebooks or PDAs. In
our work we extended this vocabulary in order to
support those device classes. Furthermore, for these
device classes we also provide a mechanism to transfer
the gathered device capabilities within the HTTP
request to the server [12].
In this way our device modeling mechanism illustrated
in Figure 3 distinguishes between UAProf enabled
devices, devices providing the user agent and devices
giving support for client side code fragments like
JavaScript, Jscript and Java (combinations are possible).
Such client side code fragments are included during the
Web document generation on the server and directly
gather device properties on the client [12]. The gathered
information is encoded in a UAProf like representation
and integrated in the HTTP request by a client/server
communication component for processing that
information on the server.
According to the gathered capabilities from the client,
the server processes the corresponding device context.
The processed context is represented as the device
profile in the context model (see Figure 1 and Figure 3).
The representation is based on the above mentioned

extended UAProf format. The processing of the device
context on the server depends on the obtained request.
1. If the request only includes the user-agent
parameter, this parameter is mapped to the according
device profile in a device repository. Note that by using
only this mechanism dynamically changing device
properties (e.g. bandwidth or size of the browsers
window) can not be taken into account.
2. If a UAProf enabled device sends a user-agent
profile or a difference profile within the request, that
information is handled by DELI [13] on the server side
which provides an API for Java servlets to determine
client capabilities using CC/PP and UAProf. The output
of the DELI component makes a profile representing
UAProf properties available.
3. Whereas today nearly only WAP 2.0 devices
support UAProf, our system is also able to
autonomously collect the devices properties of other end
devices (e.g. Notebook, PDA) via the above mentioned
client side code. The on the client gathered properties
are sent within the HTTP request. Our server processes
that information and merges it with an existing or by
DELI generated device profile.

Context Model

Acquiring Device Capabilities (Client)

Device Profile

Device
ModelingDELI framework

updated device
capabilities (UAProf)

UserAgent

Update Device Context

client side code (e.g.
JavaScript, JAVA, JScript)

Client/Server
Communication

device profile
request

device profile
response

Device Repository

UAProf enabled device

Figure 3: Modeling Device Capabilities

The usage of these mechanisms [14] enables to acquire
even permanently changing device properties. The result
is an always up-to-date device profile of the context
model. With our implemented monitoring component
the states and capabilities of the current client device
can be effectively used for distribution strategies.

3.2. Defining Distribution

Having the knowledge about various system states, the
distribution and/or omitting of system components can
be triggered. This is done based on a distribution logic
according to which the system can react on changing
system states by adapting its structure/architecture. The
following code fragment shows a distribution logic that
can be attached to a component of the system

architecture. This example is taken from the system
component that handles the client side execution of the
user modeling component and the according adaptation
transformation:

<Logic junctor="and">
 <MonitorComponent name="ServerPerformance">
 <Parameter name="cpu_usage"
 comparator=">" value="60"/>
 </MonitorComponent>
 <MonitorComponent name="ContextModel">
 <Parameter name="/DeviceProf/Browser/JavaEnabled"
 comparator="==" value="true"/>
 </MonitorComponent>
</Logic>

The code shows that the component and the
transformation are only carried out if the processor’s
time consumption (measured by the
“ServerPerformance” monitoring component) exceeds
60 percent and the client device supports the execution
of Java applets (measured by the “ContextModel”
monitoring component that evaluates the device profile
of the context model). The distribution logic of the
system component that handles the server side user
modeling mechanism looks similarly. In that case the
components are executed only if the processor’s time
consumption falls below 60 percent or if the client
device does not support Java applets.

3.3. Synchronizing Context Information

With the distribution mechanisms presented in the last
sections the processing of server side components can
be omitted and the components that are executable on
the client are integrated into the Web pages during their
generation. Still, the client side execution of components
requires not only the components themselves but also
the underling data. In our user modeling example this
means that also the user profile containing the rule
based representation of user preferences is needed in
order to control the transformation.
For that purpose we designed and implemented a
mechanism that synchronizes the client and the server
side context models (Figure 2). To provide versatility,
this mechanism does not affect the normal Web
application and its delivery to the client. The context
data is automatically included (by using hidden forms or
applet initialization parameters) into the generated Web
pages during the rendering process. The changed
context data is communicated back to the server within
an HTTP request. Therefore, the same mechanism as the
one for sending the automatically gathered device
capabilities is used (see Section 3.1.2).
Those synchronization mechanisms of course produce
additional network traffic that raises latency. Still, in the
most scenarios the synchronization has to be performed
only when a user enters (login) or leaves (logout) the
Web application. Other scenarios in which server side

components and client side components depend on the
same data structures are possible but should be avoided
in order to keep the latencies short.

4. EVALUATION

A short evaluation of the proposed distribution
mechanism can be seen in Figure 4. The diagram shows
the server response time according to the number of
interactions the user has done with a Web application.
The first (blue) curve represents the status before the
distribution mechanism is launched and shows a
continuous growth according to the number of
interactions done by the user. This is because for every
interaction a set of rules representing the user’s
preferences has to be updated or extended during user
modeling. The second (pink) curve shows the situation
when the distribution manager decides to perform the
user modeling component on the server side and is
therefore also continuously growing. Since the
distribution management requires some additional time,
the response times are even a little bit longer (average:
8,6ms). This time is also needed by performing the
modeling component on the client side. The third
(yellow) curve indicates the client-side execution of the
user modeling component and shows that the number of
interactions has no effect on the server response time.
This means that depending on the number of
interactions the distribution of the user modeling
reduces the server load and thus the response time (10%
at 3-4 interactions).

370
380
390
400
410
420
430
440
450
460

0 1 2 3 4 5 6 7 8 9 10 12
number of interactions

se
rv

er
 r

es
po

ns
e

tim
e

(m
s)

1. user modeling on the server without distribution mechanism
2. user modeling on the server with distribution mechanism
3. user modeling on the client with distribution mechanism
Figure 4: Performance Measurements

5. CONCLUSION AND FUTURE WORK

In this paper we proposed a component-based approach
for reducing server load by dynamically omitting
optional server tasks or executing them on the client
devices. It was shown how system states can be
measured with monitoring components in order to use
that information for distribution mechanisms that are

handled by a distribution manager. Furthermore,
methods for synchronizing the underlying data structures
(e.g. context information) between the server and the
client were presented. Finally, performance
improvements were evaluated by specific measurements.
By using our distribution logic (see 3.2) the execution
of system components can be efficiently triggered. Still,
even though this mechanism enables to define
elaborated distribution strategies, the definition of
complex system adaptation processes can be a difficult
task for the system administrator. In the near future we
want to decrease this complexity by visual
administration and configuration tools. Further future
work will concentrate on minimizing the server load by
additional fragment-based cache strategies aiming to
reduce the size of the documents that were processed
during the pipeline-based document generation.

REFERENCES

[1] Barish, G., Obraczka, K., “World Wide Web Caching:
Trends and Techniques”, IEEE Communications, Internet
Technology Series, May 2000.

[2] Zhu, H., Yang, T., “Class-based cache management for
dynamic web contents”, in Proceedings of IEEE
INFOCOM, 2001.

[3] Iyengar, A., Challenger, J., “Improving web server
performance by caching dynamic data”, in USENIX
Symposium on Internet Technologies and Systems, 1997.

[4] Cao, P., Zhang, J., Beach, K., “Active cache: Caching
dynamic contents on the web”, in Proceedings of the
IFIP Conference on Distributed Systems Platforms and
Open Distributed Processing (Middleware ’98), 1998.

[5] Calo, S., Verma, D., “An architecture for acceleration of
large scale distributed web applications”, 2002.

[6] Huang, C., Sebastine, S., and Abdelzaher, T., “An
Architecture for Real-Time Active Content Distribution”,
In Proceedings of the 16th Euromicro Conference on
Real-Time Systems (ECRTS 04), 2004.

[7] Bourke, T., “Server Load Balancing”, O'Reilly &
Associates, ISBN: 0-596-00050-2, August 2001.

[8] Comquad Project Homepage: http://www.comquad.org/
[9] Hinz, M., Fiala, Z., “AMACONT: A System Architecture

for Adaptive Multimedia Web Applications”, (XSW
2004), Berliner XML Tage, Berlin, October 2004.

[10] Wireless Application Group, “User Agent Profile
Specification”, Open Mobile Alliance WAP Forum, 2001.

[11] Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm,
J., Butler, M., and Tran, L., “Composite
Capability/Preference Profiles (CC/PP): Structure and
Vocabularies 1.0”, W3C Recommendation, January 2004.

[12] Hinz, M., Fiala, Z., “Personalization-based Optimization
of Web Interfaces for Mobile Devices”, in Proceedings of
the MobileHCI 2004, September 2004, Scotland.

[13] Butler, M, “DELI: A DElivery context LIbrary for CC/PP
and UAProf”, HP, External Technical Report HPL-2001-
260 (revised version 02/08/2002), 2002.

[14] Hinz, M., Fiala, Z., “Context Modeling for Device- and
Location-Aware Mobile Web Applications”, 3rd
International Conference on Pervasive Computing
(Pervasive 2005), PERMID 2005, München, May 2005.

http://www.comquad.org/

	INTRODUCTION
	CONTEXT AWARE WEB ARCHITECTURES
	ENHANCING PERFORMANCE BY DISTRIBUTING AND OMITING SERVER TAS
	Monitoring System States
	Measuring System Server Load
	Measuring Device Capabilities

	Defining Distribution
	Synchronizing Context Information

	EVALUATION
	CONCLUSION AND FUTURE WORK
	REFERENCES

