
AMACONT: A System Architecture for Adaptive
Multimedia Web Applications

Michael Hinz, Zoltán Fiala

Dresden University of Technology

Heinz-Nixdorf Endowed Chair for Multimedia Technology
Mommsenstr. 24, D-01062 Dresden

{michael.hinz, zoltan.fiala}@inf.tu-dresden.de

Abstract: Engineering personalized ubiquitous Web applications requires to de-
velop adaptable Web content as well as to automatically adjust it to varying client
devices and dynamically changing user preferences. To meet this requirement, this
paper introduces the system architecture of the AMACONT project [Am04] that
aims at the dynamic generation of Web presentations tailored to users’ varying
needs and device capabilities. Different techniques for static and dynamic content,
layout and structure adaptation supported by the overall architecture are explained.
Furthermore, strategies for dynamic device and user modeling are illustrated in or-
der to guarantee up-to-date user and device models for the whole content genera-
tion process. Finally, modules of a modular graphical authoring tool for the visual
development of adaptive Web applications are presented.

1 Introduction

Providing personalized information becomes an important challenge of today’s Web
development. The raising number of users with an increasing variety of mobile devices
requires the creation and publication of content that is tailored to users’ needs and plat-
form capabilities. Effective reuse mechanisms have to be evolved for presenting infor-
mation or parts of it in varying contexts. Furthermore, a strict separation of different
concerns like content, navigation and presentation is required in order to store structure
and information in a device and user independent way. Finally, adaptation rules referenc-
ing user models and device profiles must be added to the presentation and dynamically
processed at run-time for each user request.
Recently, different approaches for adapting content to different contexts have emerged.
NAC (Negotiation and Adaptation Core) is a basic core for multimedia services adapta-
tion and negotiation in heterogeneous environments [LL01]. However, since this ap-
proach necessitates special modules and browser extensions on the client side, it is not
practical for straightforward use on arbitrary clients. In [LL02] a decision engine with
QoS awareness is proposed that can automatically negotiate the appropriate adaptation
or transcoding strategies for producing an optimal adapted version. Several transcoding
methodologies employed by the IBM WebSphere Transcoding Publisher product are
described in [Br01]. Nevertheless, as transcoding techniques only transform existing
Web content like HTML to other representations, these approaches are limited.

Other approaches focus on content adaptation in specific application domains and are
therefore limited to those scenarios. Most of them (e.g. [ZPS01], [Gr97]) concentrate on
adaptation in the location based service or the local information domain. In the domain
of virtual communities the Community-Driven Adaptation [Mo04] middleware architec-
ture is used to adapt content based on user feedback.
In this paper a system architecture for the development and delivery of general-purpose
adaptive cross-media Web applications is presented. Based on the concept of reusable
Web document components it provides a framework for the dynamic transformation of
content to a dynamically changing user and device context.

2 A System Architecture for Adaptive Web Content

The main goal of our architecture is the generation of personalized applications for the
ubiquitous Web. This assumes to provide adaptive intelligent user interfaces addressing
heterogeneous capabilities of device classes and an automatic adjustment of content
regarding those device classes. The overall architecture of AMACONT was realized on
the basis of the XML publishing framework Cocoon [Co04]. It aims at transforming
adaptive Web components to Web pages adapted to user properties and preferences as
well as device profiles. This process is performed in a stepwise, pipeline oriented way
(see Figure 1).

 </alay:LayoutManager>
 </ amet:LayoutProperties>
</ aco:MetaInformation>
< aco:Variants>
 ="va t1<aco:Variant rian name " la
 <aco:MetaInformation>
 <amet:LayoutPropertie
 <alay:LayoutMana
 <alay:Overlay
 <alay:Co
 <alay:Co
 </alay:Overla
 </alay:LayoutMan
 </amet:LayoutPropertie
 </ aco:MetaInformation>
 <aco:SubComponents>
 <aco:AmaImageCompo
 <aco:MetaInforma
 <amet:MetaD
 <amet:MetaD
 Ope
 </amet:MetaD
 </aco:MetaInforma Pipeline-based Document Generation

Input Doc.
contains all
variants and
adaptation
options

Transform
adaptation
to device
capabilities

Rendering
XHTML
CHTML
WML

Transform
adaptation
according to
user
properties

Transform
adaptation
according to
user
preferences

Component
Repository

Request

User Modeling
CDL 4

Device / User Model
Identification

Profile
Preference

Profile

update

User Interactions

Device Profile

Device Modeling
DELI

Device Properties

update

Figure 1: Dynamic Generation Process of Personalized and Device Dependent Web Pages

For each user request, a complex document component encapsulating all possibilities
concerning its content, layout, and structure is retrieved from a component repository. A
short introduction to the underlying component-based document format and its support
for adaptation is given in Section 2.1. According to the device and user model, this

document is subdued to a series of XSLT and JAVA transformations, each considering a
certain adaptation aspect by the configuration and selection of components (see section
2.2). After the resulting (adapted) component hierarchy is determined, it has to be pre-
sented in a specific output format (XHTML, cHTML, WML etc.). According to the
layout managers described in Section 2.2.3, this rendering happens automatically.
To make sure that the document generation is always based on an up-to-date user and
device model, these models have to be permanently updated according to the user’s
browsing behavior. A detailed introduction to the dynamic user and device modeling
techniques is given in Section 2.3.

2.1 Document Model

The component-based document format of AMACONT aims at building personalized
ubiquitous Web applications by aggregating and linking configurable document compo-
nents. These components are instances of an XML grammar representing multimedia
Web content on different abstraction levels. Media components encapsulate concrete
media assets (e.g. text, image, video and audio) by describing them with technical meta-
data. Content units group media components by declaring their layout in a device-
independent way. Finally, document components define a hierarchy out of content units
to fulfill a specific semantic role. The hyperlink level for defining typed links is spanned
over all component layers. The main benefits of the document model are the support for
reuse of content via component technology and the support for user and device adapta-
tion of dynamic generated Web pages. Therefore the model is suitable for cross media
applications displaying information in varying context. For a detailed introduction to the
document model the reader is referred to [Fi03].

2.2 Adaptation during Pipeline-based Generation

As mentioned above, during the document generation process an input document con-
taining adaptation rules is adjusted to a dynamic device and user model. Figure 1 shows
a possible scenario containing three steps. The first two adaptation steps are performed
according to the variant selection mechanism described in section 2.2.1. This way the
hierarchy of components is adjusted to static user properties (age, gender, knowledge
level, etc.) as well as device profiles and classes (e.g. PDA, cell phone or notebook). The
third step adjusts the media components contained in this transient document to changing
user preferences by varying their occurrence. Finally, the resulting document is trans-
formed to the requested output format (e.g. XHTML, cHTML, WML).

2.2.1 Adaptation in Dependency of User and Device Properties

To define adaptive behavior in a generic way, each component may include a number of
variants. As an example, the definition of an image component might include (in its

body) two alternatives for color and monochrome displays. Similarly, the number, struc-
ture, arrangement, and linking of subcomponents within a document component can also
vary depending on device capabilities or user preferences. The decision which alterna-
tive is selected is made during document generation by a Java-based transformer accord-
ing to a selection method which is declaratively described in the component’s header.
Such selection methods are chosen by component developers at authoring time and can
represent arbitrarily complex conditional expressions parameterized by user and device
model parameters. The XML-grammar for selection methods allows the declaration of
user model parameters, constants, variables, and operators, as well as complex condi-
tional expressions (such as if or case) of arbitrary complexity [Fi03]. Note that alterna-
tives can be declared for components of all granularities, thus allowing to define adap-
tive behavior on different abstraction levels.

2.2.2 Adaptation in Dependency of Rules Representing User Preferences

While the mechanism described in Section 2.2.1 takes the whole component hierarchy of
the Web presentation into account, another adaptation technique for dynamically chang-
ing the appearance of single media components has been developed. Aim of this tech-
nique is to allow users to interact on media components, to automatically derive user
preferences from those interactions and to dynamically update the resulting Web presen-
tation according to these preferences. Note that this strategy can be effectively used for
optimizing Web pages on mobile devices with limited presentation space. Figure 2
shows an example of an interactive multimedia Web presentation allowing to perform
interactions on an image object. A user being more interested in textual information (due
to the limited display capabilities of his browser) could collapse images and enlarge
texts. According to this interaction, the system can update the user model and generate
the following Web pages according to this new model.

Figure 2: Interactive Multimedia Web Presentation: By collapsing the picture more space for other

presentation objects is available

For representing and dynamically updating such user preferences CDL4 [Sh96], an in-
cremental learning algorithm, is used. It utilizes a dynamic set of decision rules for ex-
pressing user interests and refines those rules in a stepwise way according to new user
interactions. During document generation, the appropriate rules are evaluated and the
occurrence of the affected media objects is adjusted. For a detailed description of this
mechanism the reader is referred to [HFW04]. In this paper the acquirement of user
interactions and their processing within the architecture is detailed (see Section 2.3.2).

2.2.3 Automatic Layout Adaptation

After the component hierarchy to be presented and the parameters of media objects have
been determined, the resulting adapted document has to be transformed to a specific
presentation format (XHTML, cHTML, WML etc.). This happens automatically accord-
ing to the AMACONT document format, which allows attaching XML-based layout
descriptions to components. Inspired by the layout manager mechanism of the Java lan-
guage (AWT and Swing), they describe a client-independent layout allow abstracting
from the exact resolution of the display or the browser's window. Note that layout man-
agers of a given component only describe the presentation of its immediate subcompo-
nents, which encapsulate their own layout information in a component-based way. At
current time four layout managers: BoxLayout, BorderLayout, GridTableLayout and
OverlayLayout can be defined. The exact adjustment of media objects according to the
layout managers happens during document generation time by XSLT stylesheets that
transform components with such abstract layout properties to specific output formats.

2.3 Device and User Modeling

Having an always up-to-date user and device model is crucial for generating personal-
ized ubiquitous Web pages. This necessitates the acquisition of existing device con-
straints, user properties and user preferences.

2.3.1 Acquiring device properties

To acquire device properties several strategies exists. The most popular method is to
analyze the HTTP user agent parameter and map the result to a device or browser reposi-
tory on the server side. This works only for nearly static properties because of the small
and not standardized vocabulary of the user agent. Hence, the CC/PP (Composite Capa-
bility / Preference Profiles) standard was established, an RDF grammar for describing
device capabilities and user preferences in a standardized way [Kl04]. However, as being
a general grammar, CC/PP makes no assumptions on concrete resource characteristics.

Therefore, our system architecture uses the WAP User Agent Profile (UAProf [Wi01])
providing a common vocabulary for WAP devices.
To support also other mobile devices (e.g. PDAs), specific extensions of UAProf have
been made. This extended format is handled by DELI [Bu02] on the server side. DELI
provides an API to allow Java servlets to determine the capabilities of a client device
using CC/PP or UAProf. Whereas today nearly only WAP devices support UAProf, our
system has to autonomously collect the devices properties of other end devices (e.g.
Notebook, PDA) via client side scripts. Those scripts are automatically included in the
presentation during document generation. Every time the user requests a new document,
those scripts send the gathered properties with the corresponding HTTP-Request to the
server. The server processes that information through a device modeling component by
forming a new profile or updating an existing profile with profile differences (profile-
diff), which are calculated according to the collected client properties (where only the
changed properties are included). To sum up, this mechanism gives the chance for an
effective and unitized handling of device capabilities of different device classes. Fur-
thermore, it enables to acquire permanently changing device properties (e.g. size of the
browsers window) by collecting that information via scripts directly on the client device.
The result is an always up-to-date device profile in the device/user model on which the
document generation is based on.

Client side Server side

User Modeling
CDL 4

Device / User Model

Preference
Profile

user interactions

Device Profile
Device Modeling

DELI
device properties

(profile-diff)

update

Device
Repository

Acquire device
capabilities

Acquire Interactions rules

Figure 3: Device and User Modeling Process

2.3.2 Modeling User Preferences

As mentioned in Section 2.2.2, adapting content to dynamic user preferences can be
effectively used for optimizing Web pages on mobile devices. Other approaches like
[Go01], [Pa04] or [Ho00] only clip or restructure Web pages to make them suitable for
limited mobile devices. However, capturing such preferences is a serious problem if we
do not want to explicitly ask the user to give explicit information about his/her prefer-
ences. Our developed system allows observing users’ browsing behavior by tracking
interactions being performed on media components. Similar to the acquirement of device
capabilities this is done by means of specific code fragments (JavaScript or JScript)
which are embedded and configured for each media component during document gen-

eration. They allow capturing user interactions on the client side and sending them back
to the server, where they are stored in history lists (session profile). In this way several
media objects (e.g. video, audio, image, text) of the Web page can be observed in order
to acquire interactions with them (e.g. video started/paused/stopped, image mini-
mized/maximized, image printed, text enlarged/collapsed, text scrolled).

Figure 4: Automatic User Modeling by Observing and Processing User Interactions

Figure 4 shows a possible sequence of automatically generated XHTML documents of
an online video store. In the left picture the user enters the default version of the page
containing no detailed information. As mentioned in Section 2.2.2, the user’s preferences
are represented in form of a decision list. In the beginning of a user session, the follow-
ing “trivial” rule is created:

[(default noInterest)]

Note that an XML grammar has been developed for representing such rules. Still, for the
sake of readability we use the above simplified formalization in this paper.
When the user is interested in getting enhanced information about videos, she maximizes
the title picture or enlarges a more detailed text description (see Figure 4, middle). This
interaction is captured by client-side scripts and sent to the server in the following form:

<component id="movie_picture" type="ImageComponent">
<userEvent name="maximized" time="1088776213776" /> </component>

<component id="movie_text" type="TextComponent">
<userEvent name="maximized" time="1088776246233" /> </component>

Based on this interaction the CDL4 algorithm is triggered, which adds the corresponding
rules to the user model:

[((medium ≠ picture) Λ (medium ≠ text) noInterest),
 ((category ≠ action) noInterest),
 (default interest)]

When the user comes back to this Web page or any other page containing the video list,
an adapted presentation according to the updated rules is generated (see Figure 4, right).
In order to establish the connection between low-level interactions (e.g. enlarging pic-
tures) and the rule semantics (interest in action films), component authors have to pro-
vide the observable media components with specific metadata. In the above example,
semantic metadata in the form of attribute-value pairs (e.g. category = ”action”) is at-
tached to the affected image component and evaluated by the CDL4 module.

3 Authoring Tools

In order to visually develop AMACONT applications a modular authoring tool is being
developed. It utilizes a flexible object model based on JDOM to provide programmatic
access to AMACONT documents. Furthermore, it allows to associate different types of
custom editor plugins with arbitrary AMACONT components. Thus, different graphical
editor modules for supporting selected steps of the overall authoring process can be
developed and “plugged in” in the authoring framework.
Recently, basic editors for creating adaptable media components (text, image, video,
audio, CSS) have been created. As an example for such media editors we mention the
image editor allowing to upload images in different formats (e.g. jpeg, gif, bmp, png), to
edit their properties in a visual way and to save them as image components. The size of
an image can be altered either by mouse dragging or by determining the explicit pixel
values by input fields. Furthermore, mechanisms for specifying the adaptive behavior of
image components have been integrated, too. Firstly, it is possible to provide an alterna-
tive text for browsers that are not able to present images. Secondly, image variants with
different quality alternatives can be added. Such variants can be created in three ways:
by uploading alternative images, by resizing the current image and save it as a new vari-
ant or by generating new images automatically. In the latter case the author can prede-
fine the properties (e.g. pixel size, color depth, image format) of an arbitrary number of
variants to be created. According to this configuration, both the new media instances and
the corresponding decision logic (see Section 2.2.1) are generated automatically. This
feature was implemented using the Java API of ImageMagick [Im04].
Another existing module is the layout editor shown in Figure 5 that aims at specifying
the device independent layout of component based Web documents. It allows to attach
layout managers (see Section 2.2.3) to components and to configure the attributes of
those layout managers in an in-tuitive visual way. Layout managers are visualized by
means of a grid that can be filled by icons representing subcomponents. Various
“Drag&Drop” techniques have been realized in order to perform most operations graphi-
cally, such as resizing the grid, placing subcomponents into grid cells, changing their
alignment etc. Besides, various input fields for fine-tuning all possible layout attributes
can be found on the right editor pane. Furthermore, a preview function for testing the
current layout in XHTML has been developed, too.

Figure 5: Layout Editor Tool for Specifying Device Independent Layout

4 Conclusion and Future Work

In this paper an overview of the AMACONT system architecture for the generation of
personalized ubiquitous applications was given. Different mechanisms for adjusting
reusable Web content to different user preferences and device capabilities, as well as
techniques for keeping user and device models up-to-date were shown. Finally, first
steps towards a visual authoring framework for component-based adaptive Web applica-
tions were presented.
Ongoing work concentrates on optimizing the performance of the architecture and reduc-
ing the server load when handling a multiplicity of users. Initial tests showed that espe-
cially dynamic adaptation mechanisms cause heavy server load. In future work we will
show how the distribution of parts of the overall architecture could improve the overall
performance. Besides distributing server components on different servers the outsourc-
ing of server code to the client devices will be examined, too. Furthermore, additional
modules of the authoring tool for specifying adaptation issues will be developed.

References

[Am04] AMACONT Project Homepage

http://www-mmt.inf.tu-dresden.de/english/Projekte/AMACONT/
[Bu02] MarkButler, M.: DELI: A DElivery context LIbrary for CC/PP and UAProf. External

Technical Report HPL-2001-260 (revised version 02/08/2002), 2002.
[Br01] Britton, K. H.; Case, R.; Citron, A.; Floyd, R.; Li, Y.; Seekamp, C.; Topol, B.; Tracey,

K.: Transcoding: Extending e-business to new environments. In IBM Systems Journal,
Technology for e-business, Volume 40, Number 1, 2001.

[Co04] The Apache Cocoon Project Homepage, http://cocoon.apache.org/
[Fi03] Fiala, Z., Hinz, M., Meissner, K., Wehner, F.: A Component-based Approach for Adap-

tive, Dynamic Web Documents. In Journal of Web Engineering, Rinton Press, Vol.2
No.1&2, (pp058-073), September 2003.

[Go01] Gomes, P.; Tostao, S.; Goncalives, D.; Jorge, J.: Web Clipping: Compression Heuristics
for Displaying Text on a PDA. In Proceedings of the Mobile HCI’01, 2001.

[Gr97] Abowd, G.; Atkeson, C.; Hong, J.; Long, S.; Kooper, R.; Pinkerton, M.: Cyberguide: A
Mobile Context-Aware Tour Guide. In Proceedings of the ACM Wireless Networks con-
ference, pages 421–433, 1997.

[HFW04] Hinz, M.; Fiala, Z.; Wehner, F.: Personalization-based Optimization of Web Interfaces
for Mobile Devices. In Proceedings of the MobileHCI 2004, Glasgow, Scotland, Sep-
tember 2004.

[Ho00] Hori, M.; Kondoh, G.; Ono, K.; Hirose, S.; Singhai, S.: Annotation-based Web Content
Transcoding. In Proceedings of the World Wide Web 9 conference, Amsterdam, Nether-
lands, 2000.

[Im04] ImageMagick hompage:
http://www.imagemagick.org/

[Kl04] Klyne, G.; Reynolds, F.; Woodrow, C.; Ohto, H.; Hjelm, J.; Butler, M.; Tran, L.: Com-
posite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0. W3C
Recommendation 15 January 2004.
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

[LL01] Lemlouma, T.; Layaïda, N.: NAC: A Basic Core for the Adaptation and Negotiation of
Multimedia Services, Opera Project, Inria, September 2001.

[LL02] Lum, W. Y.; Lau, F. C. M.: A Context-Aware Decision Engine for Content Adaptation.
In the IEEE Pervasive Computing journal, July-September 2002 (Vol. 1, No. 3), pages
41-49.

[Mo04] Mohammed I.; Chin A.; Cai J.; De Lara E.: Community Driven Adaptation: A Middle-
ware Architechture for Automatic Content Adaptation in Pervasive Enviroments. In Pro-
ceedings of the International Middleware 2004 conference, 2004.

[Pa04] Palm Web Clipping Resources:
http://www.palmos.com/dev/tech/webclipping/resources.html

[Sh96] Shen, W.: An efficient Algorithm for Incremental Learning of Decision Lists. Technical
Report, USC-ISI-96-012, University of Southern California, 1996.

[Wi01] Wireless Application Group: User Agent Profile Specification. Open Mobile Alliance
WAP Forum 2001.

[ZPS01] Zarikas, V.; Papatzanis, G.; Stephanidis, C.: An architecture for a self-adapting informa-
tion system for tourists. In Proceedings of the Workshop on Multiple User Interfaces
over the Internet, 2001.

