
Personalization-based Optimization of Web Interfaces
for Mobile Devices

Michael Hinz, Zoltán Fiala, Frank Wehner

Dresden University of Technology
Heinz-Nixdorf Endowed Chair for Multimedia Technology

Mommsenstr. 24
D-01062 Dresden

{michael.hinz, zoltan.fiala, frank.wehner}@inf.tu-dresden.de

Abstract. Developing personalized applications for the ubiquitous Web
assumes to provide different user interfaces addressing heterogeneous
capabilities of device classes. Major problems are the lack of sufficient
presentation space and the diversity of interaction techniques, both requiring
adaptive intelligent user interfaces. To meet this challenge this paper introduces
an approach for the personalization-based optimization of Web interfaces for
mobile devices. On the basis of a user model different adaptation issues are
discussed. Firstly, static adaptation mechanisms affecting the structure of Web
documents as well as layout managers enabling a device independent definition
of Web presentations for heterogeneous devices are introduced. Then an
interactive mechanism for dynamically predicting user preferences for hiding
unnecessary information through content adaptation is presented. As a proof of
concept an architecture realized by a pipeline-based document generator was
developed for static/dynamic adaptation, which is partly explained in this paper.

1 Introduction

Providing personalized information becomes a significant challenge of today’s Web
development. The raising number of users with an increasing variety of mobile
devices requires the creation and publication of content customized for different user
preferences and platforms. A major problem is the diversity of display capabilities
and interaction techniques provided by mobile clients, which establishes the need for
adaptive intelligent user interfaces that automatically adjust their content to those
heterogeneous requirements. However, existing document formats (such as HTML,
cHTML or WML) are hardly suitable for engineering personalized ubiquitous Web
applications, as they do not provide mechanisms for describing the adaptive behavior
of content pieces in a generic way.

Existing approaches for displaying Web content on mobile devices mostly focus on
restructuring or clipping existing pages according to static guidelines [1], [2], [4].
However, including the user’s changing interests in this process enables not only a
better personalization but also an optimized utilization of the available presentation
area.

The paper is structured as follows. After addressing related work in Section 2 a short
overview of our component-based document model for personalized ubiquitous Web
presentations is given. Section 4 deals with different aspects of adaptation supported
by the document format, and gives a short introduction to the user model. On this
basis static adaptation in dependency of user and device properties, dynamic
adaptation in dependency of user preferences and an automatic layout adjustment
mechanism are discussed. The implemented system architecture is explained in
Section 5. Section 6 concludes the paper and suggests future research directions.

2 Related Work

Recently, different solutions for adapting Web presentations and applications to
mobile devices have emerged. Basically two main approaches can be distinguished.
The first one adjusts existing Web pages (mostly HTML) to the limited display and
interaction capabilities offered by mobile devices. The second one aims at building
personalized ubiquitous Web applications “from scratch” and considers device (and
user) adaptation already during the specification and implementation process.

Different mechanisms for automatically adjusting existing desktop Web pages to
mobile browsers have been developed. Some solutions, e.g. Microsoft’s Pocket
Internet Explorer [1] or Opera for Smartphones/PDAs [2] resize large Web pages to
fit into the small displays of mobile clients. Even though all information from the
original page is displayed, it is reformatted in order to eliminate horizontal scrolling.
The disadvantage of this approach is a presentation often featured with unnecessary
information or layout fragments. Therefore, Web clipping techniques have emerged
which firstly analyze the structure of Web pages. By discovering priorities, page
fragments are classified as either important or unimportant, and the latter are excluded
from the “clipped” presentation. Two strategies for defining priorities exist. The first
one uses intelligent algorithms to automatically classify page fragments [3], [4]. The
second strategy [5], [6] requires a manual definition of priorities. As further
interesting approaches we mention HANd [7] and SmartView [8] which structure the
original Web page into zones. Through automatically generated summary pages or
thumbnails every zone can be reached via navigation. The advantage of those
techniques is that no information is clipped since by navigation every zone can be
reached. Still, extra navigation is required and by splitting a page the overview gets
lost. Therefore the user’s mental load rises. A similar approach for text browsing [9]
enables the summarization of texts with an "accordion'' display technique.

The main advantage of the approaches mentioned above is that they are principally
suitable for adapting arbitrary Web pages. However, evaluations ([10]) show that it is
often impossible to predict (or enforce) the result of the transformation process and
that in many cases erroneous output pages are provided. Furthermore, since all these
approaches operate on the HTML-based presentation view of their input pages,
adaptation is restricted to the exclusion or rearrangement of content pieces. On the
other hand, we claim that effective device adaptation has to be already considered
during the conceptual and navigational design of Web applications.

Recently, different approaches for modeling and engineering ubiquitous personalized
Web systems have emerged. Among the most significant ones we mention WebML
[11] and Hera [12]. However, all these approaches focus on the conceptual modeling
and design of hypermedia applications, not supporting the flexible reuse of adaptable
implementation artifacts. Furthermore, device adaptation is not a central aspect of
these approaches. To fill this gap, the project AMACONT [13] recently introduced a
component-based document format for personalized ubiquitous Web presentations
[14]. It focuses not on the conceptual design of Web applications, but on the
challenge to reuse adaptable implementation artifacts. In this paper a detailed
overview of personalization issues (with a special focus on device adaptation) is
given.

3 The Document Model

In the Amacont approach Web sites are composed of configurable Web components
[14]. These components are instances of an XML grammar representing adaptable
content on different abstraction levels. Web sites are constructed by aggregating and
linking components to complex document structures. During Web page generation
these abstract document structures are translated into Web pages in a concrete output
format, adapted to a specific user model or client device, respectively.

E-Learning Course

Media
Components

Document
Components

Chapter 2

Content Unit
Image with

textual
explanation

Content Unit
Components

Hyperlinks

Content Unit
Image with

audio
explanation

Content Unit

...

Overview

Chapter 1

Fact

Example

Text
Text

Text
Video

Text
Style-
sheetText

Image
Text

Media
...

Introduction

Hyperlink
Aggregation

Fig. 1. The document model

The lowest abstraction level introduces media components that encapsulate concrete
media assets. These comprise text, structured text (e.g. HTML), images, sound, video,
Java applets and may be extended arbitrarily. Besides MPEG7-based technical
properties additional content management information is provided, too.

On the second level media components belonging together semantically - e.g. an
image with textual description - are combined to so called content unit components.
Defining such collections is a key factor of reuse. The spatial adjustment of contained
media components is described by client-independent layout properties abstracting
from the exact resolution and presentation style of the current display (Section 4.3).

Thirdly, document components are specified as parts of Web presentations playing
a well defined semantic role (e.g. a news column, a product presentation or even a
Web site). They can either reference content units, or aggregate other document
components. The resulting hierarchy describing the logical structure of a Web site is
strongly dependent from the application context. Again, the spatial adjustment of
subcomponents is described in a client-independent way.

Finally, the orthogonal hyperlink view defines links spanned over all component
levels. Uni- and bidirectional typed hyperlinks based on the standards XLink, XPath
and XPointer are supported. For a detailed introduction to the document model the
reader is referred to [14].

4 Adaptation Support

The component-based document format aims at supporting adaptation by two
mechanisms [15]. Firstly, it enables to encapsulate adaptation logic in components on
different abstraction levels. Secondly, it allows describing the visual aspects of
components by client-independent layout descriptors that can be automatically
adapted to different output formats. Both adaptation aspects can be declared by
attaching specific adaptation metadata to components. During document generation,
this metadata is evaluated according to an XML-based user model and the
corresponding adaptation processes are performed.

Furthermore, two types of adaptation or personalization can be distinguished:
adaptability and adaptivity. Adaptability (also known as static adaptation) means that
the generation process is based on available information that describes the situation in
which the user will use the generated presentation [16]. Adaptivity (also mentioned as
dynamic adaptation) is the kind of adaptation included in the generated adaptive
hypermedia presentation. To put it simple, in the second case the hypermedia
presentations themselves change while being browsed. This dynamic nature of
adaptivity is supported by feedback mechanisms updating the user model according to
the user’s interactions with the presentation.

This section provides an overview of AMACONT’s versatile adaptation
capabilities. Firstly, the structure of the user model is depicted which is used across
all examples. Then, different aspects of static and dynamic personalization are
described in detail. All introduced adaptation examples aim at optimizing Web
presentations to mobile end devices.

4.1 The User Model

The adaptation of components happens according to an XML-based user model. This
is composed of a number of profiles that can be seen in Fig. 2 Each profile relies on

CC/PP (Composite Capability / Preference Profiles), an RDF grammar for describing
device capabilities and user preferences in a standardized way [17]. However, as
being a general grammar, CC/PP makes no assumptions on concrete resource
characteristics. Therefore, an XML-based schema was developed for each profile. By
adding new profiles the user model can be extended arbitrarily.

The first part (IdentificationProfile) of the user model contains information to
identify users. Besides a set of general properties (name, email etc.), arbitrary
extensions are allowed. Technical properties and capabilities of users’ client devices
are stored in DeviceProfile. It is represented on the basis of the WAP User Agent
Profile (UAProf [18]) providing a common vocabulary for WAP devices. To support
also other mobile devices (e.g. PDAs), specific extensions of UAProf have been
made. Furthermore, as usually there are much more users than devices, it is also
possible to reference separately stored device profiles.

User Model

IdentificationProfile
ID
Password
Role
...

DeviceProfile
HardwarePlatform
SoftwarePlatform
WapCharacteristics
BrowserUA
NetworkCharacteristics
PushCharacteristics
...

SessionProfile
Session
PageRequest

UserInteractions
Events
...

PageRequest
...

Session
...

EnvironmentProf.
...

LongTermProfile
References

PreferenceProfile
Properties
Rules

Fig. 2. The user model

The SessionProfile integrates user interactions by grouping them to page requests and
sessions. It stores past user interactions in the form of events related to data
acquisition objects (see section 4.4). Based on this interaction history list the user
modeling process generates new knowledge about the user in term of rules (see
Section 4.4). Those rules are stored in the PreferenceProfile and used by the
document generator to adapt the content of a web page to user preferences. The last
two profiles are placeholders for upcoming research. EnvironmentProfile will provide
information about the context and location of the user for supporting location based
services. LongtermProfile will have a bridging function between a special user model
and comprehensive models containing information about all users of the system. E.g.
the user class membership of a user will be represented by this profile in order to
reduce server load by handling groups of users together.

4.2 Static Adaptation in Dependency of User and Device Properties

The document format described in Section 3 supports personalization by
encapsulating adaptive behavior in components on different abstraction levels. Firstly,
adaptation is required on the level of media components in order to consider various
client capabilities or other technical preferences (e.g. bandwidth, color depth, etc.) by

providing alternative media instances with varying quality. Secondly, on the level of
content units the number, type and arrangement of inserted media components can be
adjusted. Consider the case of two online-shop customers, one of them preferring
detailed textual descriptions, the other visual information. The presentation for the
first user might include content units containing text objects, for the other one rather
images or videos. Thirdly, personalization of document components concerns the
adaptation of the whole component hierarchy, which results in different
subcomponent trees for different user preferences and/or device capabilities. Finally,
adapting hyperlinks enables personalized navigation structures within the generated
Web presentation.

In order to describe adaptive behavior in a generic way, each component may
include a number of variants. As an example, the definition of an image component
might include two variations for color and monochrome displays. Similarly, the
number, structure, arrangement and linking of subcomponents within a document
component can also vary depending on device capabilities or user properties. The
decision, which alternative is selected, is made during document generation by an
XSLT stylesheet according to a certain selection method which is described in the
component’s header. Such selection methods are chosen by component developers at
authoring time and can represent arbitrary complex conditional expressions
parameterized by user model parameters. This separation of describing variants (in
the component body) and adaptation logic (in the component header) allows reusing a
given component in different adaptation scenarios. The XML code below
demonstrates the definition of a document component’s variants and a selection
method. In a Web presentation offering video tapes, different content depending on
the bandwidth of the user’s device is presented.

Table 1. Defining component variants (left) and selection methods (right)

<AmaDocumentComponent name="Film">
 <MetaInformation>
 ...
 </MetaInformation>
 <Variants>
 <Variant name="Video_Trailer">
 ...
 </Variant>
 <Variant name="Cover_Picture">
 ...
 </Variant>
 </Variants>
</AmaDocumentComponent>

<AdaptiveProperties>
 <If>
 <Expr operator=”greaterThan”>
 <UserModelParam>
 Bandwidth
 </UserModelParam>
 <Const>64000</Const>
 </Expr>
 <Then res="Video_Trailer"/>
 <Else res="Cover_Picture"/>
 </If>
<AdaptiveProperties>

The processing XSLT style sheet substitutes the integer variable “Bandwidth” by its
value from the current user model, performs the selection method and determines the
proper variant of the “Film” component. As this variant might also have varying
subcomponents, the style sheet works recursively. The XML-grammar for selection
methods allows the declaration of user model parameters, constants, variables and
operators, as well as complex conditional expressions of arbitrary depth. The
processing XSLT stylesheets act as an interpreter for this “selection method
language”.

4.3 Automatic Layout Adaptation

In order to describe the presentation of component-based Web documents,
AMACONT allows attaching XML-based layout descriptions to components.
Inspired by the layout manager mechanism of the Java language (AWT and Swing)
and the abstract user interface representations of UIML [19] and XIML [20], they
describe a client-independent layout allow abstracting from the exact resolution of the
display or the browser's window. Note that layout managers of a given component
only describe the presentation of its immediate subcomponents, which encapsulate
their own layout information in a component-based way.

At current time four layout managers can be defined. BoxLayout allows multiple
components to be laid out either vertically or horizontally. BorderLayout arranges
components to fit in five regions: north, south, east, west, and center.
GridTableLayout enables to lay out components in a grid with a configurable number
of columns and rows. Finally, OverlayLayout allows to present components on top of
each other.

Fig. 3. Layout managers: upper left: BoxLayout, upper right BorderLayout, lower left:
GridTableLayout, lower right OverlayLayout

Layout managers are formalized as XML elements with specific attributes. Two kinds
of attributes exist: layout attributes and subcomponent attributes. Layout attributes
declare properties concerning the overall layout and are defined in the corresponding
layout tags. As an example the axis attribute of BoxLayout determines whether it is
laid out horizontally or vertically. On the other hand, subcomponent attributes
describe how each referenced subcomponent has to be arranged in its surrounding
layout. Table 2 summarizes the possible attributes of BoxLayout by describing their
names, role, usage (required or optional) and possible values.

Table 2. Example: layout attributes of the BoxLayout manager

Layout Attributes Meaning Usage Values
axis orientation of the BoxLayout req. xAxis | yAxis
space space between subcomponents opt. percent or absolute
width width of the whole layout opt. percent or absolute
height height of the whole layout opt. percent or absolute
border width of border between subcomp. opt. percent or absolute
Subcomponent Attributes
align horizontal alignment of subcomp. opt. left | center | right
valign vertical alignment of subcomponent opt. top | center | bottom
ratio space taken by subcomponent opt. percent
wml_visible show on same WML card? opt. boolean
wml_desc link description for WML opt. string

The optional attribute wml_visible determines whether in a WML presentation the
given subcomponent should be shown on the same card. If not, it is put onto a
separate card that is accessible by an automatically generated hyperlink, the anchor
text of which is defined in wml_description. This mechanism of content separation
and navigation adaptation is used since the displays of WAP capable mobile phones
are very small.

The exact rendering of media objects happens during document generation time by
XSLT stylesheets that transform components with such abstract layout properties to
specific output formats. Three stylesheets for converting those descriptions to
XHTML, cHTML and WML output have been realized.

4.4 Dynamic Adaptation Issues

The mechanisms described above support adaptability by adjusting Web presentations
to (mostly) static user and device properties. However, in order to realize dynamic
adaptation (or adaptivity), they have to be extended by additional feedback
mechanisms. User interactions have to be captured on the client and sent back to the
server in order to update the user’s preference profile, i.e. to automatically generate
adaptation rules according to the user’s browsing behavior. In contrast to other
approaches (e.g. [3], [5], [6]), this allows to adjust Web presentations to even
dynamically changing user interests.

Note that this strategy can be effectively used for optimizing Web pages on mobile
devices with limited presentation space. As an example, take the case of an interactive
multimedia Web presentation allowing to perform interactions on selected media
items. A user being more interested in textual information (due to the limited display
capabilities of his browser) could collapse images and enlarge texts. A corresponding
learning algorithm could recognize this and generate the appropriate adaptation rules
which automatically collapse all images for the user’s display.

A further possibility is to provide observed media components with a special
semantic meaning in order to predict semantic user preferences. Let us take the case
of an online product presentation where a user enlarges a picture containing technical
features of a selected product and then changes to the next product. The system could

establish a rule that the user is interested in technical details and generate the next
product presentation according to this rule.

Acquire Interactions
In order to observe users’ browsing behavior, our developed system allows to track
interactions that are performed on media components included in a Web page. During
server side document generation specific code fragments (implemented as JavaScript
or JScript functions) are embedded and configured for each media component to be
observed. They allow capturing user interactions on the client side and sending them
back to the server, where they are stored in history lists (session profile). Acquirable
interactions are listed in Table 3.

Table 3. Acquirable interactions of observed components

observed component acquirable interactions
video and audio component started, paused at, stopped at
image component minimized, maximized, printed
scroll text component scrolling time, end reached
toggle text component enlarged, collapsed
pop up text component pop up

In order to make media components observable, component authors have to provide
them with specific metadata. Hence, semantic metadata in the form of attribute-value
pairs (e.g. content=”technical details”) can be attached to them. Thus, the semantic
preferences of user’s interacting with those objects can be predicted.

Processing Interactions
By evaluating interactions, suggestions on users’ preferences and knowledge can be
made and parts of the user model can be updated or specialized. In our developed
prototype application focusing on product presentation this specialization is
performed by the incremental learning algorithm CDL4 (Complementary
Discrimination Learning [21]). The algorithm was approved as very useful in adaptive
multimedia product presentations in an earlier project of the authors’ research group
[22].

CDL4 utilizes decision lists in order to describe user models. A decision list is a
series of simple rules describing user preferences. As an example, the following
decision list claims that the user is not interested in multimedia information about
actors other than the main actor:

[((actor ≠ mainActor) Λ (medium ≠ text) noInterest),
 (default interest)]

If no rules from earlier sessions exist, CDL4 starts with a minimal default decision list
(see second line in the example above) in the beginning of each user session.
According to the user’s interaction behavior, this is extended (specialized) in an
incremental way.

Interactions stored in the session profile are transformed to so called training
instances. Training instances are also formed as single decision rules and serve as the
input for the CDL4 algorithm. For instance, if the user enlarges a picture component
containing the biography of a supporting movie actor, the server generates following
training instance:

[biography, supportingActor, picture interest]

Each time a new training instance is provided, the algorithm has to check whether its
current decision list already covers this new instance. If yes, the decision list remains
unchanged. Otherwise, the algorithm learns this new instance and updates
(specializes) the corresponding decision list by changing an existing rule or inserting
a new one. In our example, the update decision list would look like this:

[((actor ≠ mainActor) Λ (medium ≠ text) Λ (medium ≠ picture) noInterest),
 (default interest)]

At the user’s next document request, the inserted media components are configured
according to the new rules. For more details on CDL4 the reader is referred to [21].

5 Generating Adaptive Web Documents

Document generation aims at transforming complex component structures to Web
pages adapted to user properties and preferences as well as device profiles. It is
performed in a stepwise, pipeline oriented way (Fig. 4). For each user request, a
complex document encapsulating all possibilities concerning its content, layout, and
structure is retrieved from a component repository. According to the user model
(containing also the device profile), it is subdued to a series of XSLT transforms, each
considering a certain adaptation aspect by the configuration and selection of
component variants (see Section 4.2).

Fig. 4 shows a possible scenario with three steps, namely adaptation to a certain
client class (e.g. PDA, cell phone or notebook), then to static user properties (age,
gender, knowledge level, etc.) and finally to semantic user preferences (e.g. interests,
media preferences).

In this scenario the first two adaptation steps are performed according to the
variant selection mechanism described in Section 4.2. Thus, the hierarchy of
components is adjusted to static user properties and device profiles.

The third step, namely dynamic adaptation according to changing user preferences
affects not the aggregation hierarchy of the overall component structure but the
presentation parameters of single media components. For example, an image can be
inserted minimized or maximized, a text can be presented in a short or in a long form,
or even videos can be started automatically. These decisions are made by the CDL4-
algorithm according to the rules stored in the preference profile.

After the component hierarchy to be presented and the parameters of media objects
have been determined, the resulting adapted document has to be transformed to a

specific output format (XHTML, cHTML, WML etc.). According to the layout
managers described in Section 4.3, this rendering happens automatically. Moreover
the data acquisition objects for tracking user interactions are included in this
transformation step, too. Again, they enable to track user interactions in the newly
generated presentation. This loop enables a dynamically adaptation process with an
always up-to-date user model.

 </alay:LayoutManager>
 </ amet:LayoutProperties>
< /aco:MetaInformation>
< aco:Variants>
 ="va t1<aco:Variant rian name " la
 <aco:MetaInformation>
 <amet:LayoutPropertie
 <alay:LayoutMana
 <alay:Overlay
 <alay:Co
 <alay:Co
 </alay:Overla
 </alay:LayoutMan
 </amet:LayoutPropertie
 </ aco:MetaInformation>
 <aco:SubComponents>
 <aco:AmaImageCompo
 <aco:MetaInforma
 <amet:MetaD
 <amet:MetaD
 Ope
 </amet:MetaD
 </aco:MetaInforma

Pipeline-based Document Generation

Input Doc.
contains all
variants and
adaptation
options

Transform
adaptation
to a certain
client class

Rendering
XHTML
CHTML
WML

Transform
adaptation
according to
user
properties

Transform
adaptation
according to
user
preferences

Component
Repository

Request

User Modeling

CDL 4

initiates

User model

Identification
Profile

Preference
Profile

Session Profile

updates

User
Interactions

Device
Profile

Fig. 4. Pipeline-based document generation

6 Conclusion and Future Work

In this paper an overview of the adaptation issues provided by the XML-based
document model and the system architecture of the AMACONT project was given.
Both static adaptation issues based on user and device properties and dynamic
personalization aspects according to dynamically changing user preferences were
discussed. Furthermore, a pipeline-based document generator was introduced for
performing those adaptations in a stepwise way. We have shown how the Web
interface of mobile devices can be optimized by those personalization techniques.
Especially the observation of users and the prediction of their preferences enabled an
automatic prioritization of content and therefore the hiding of unnecessary
information from the user.

Future work concentrates on the authoring process of dynamically personalized
Web documents for heterogeneous mobile devices. A modular framework for creating
and configuring components in different stages of the authoring process is being built.
Furthermore, performance aspects of the system architecture will be addressed, too.
Since dynamic adaptation mechanisms cause significant server load, optimizing the
performance seems to be an important effort when handling lots of users. Initial tests
showed that the number of requests and the structure of existing rules play an
important role when the system manages dynamic adaptation. Reducing rules
representing user preferences to a minimum could improve the overall performance.

References

1. Pocket IE: http://www.microsoft.com/windowsmobile/products/pocketpc/default.mspx
2. Opera's Small Screen Rendering: http://www.opera.com/products/smartphone/smallscreen
3. Gomes, P.; Tostao, S.; Goncalives, D.; Jorge, J.: Web Clipping: Compression Heuristics

for Displaying Text on a PDA. In Proceedings of the Mobile HCI’01, 2001.
4. Bickmore, T.; Schilit, B.: Digestor: Device-independent Access to the WWW. In

Proceedings of the WWW6 conference, 1997.
5. Hori, M.; Kondoh, G.; Ono, K.; Hirose, S.; Singhai, S.: Annotation-based Web Content

Transcoding. In Proceedings of the WWW9 conference, Amsterdam (Netherlands), 2000.
6. Palm Web Clipping: http://www.palmos.com/dev/tech/webclipping/resources.html
7. González-Castano, F.; Anido Riffón, L.; Costa Montene-gro, E.: A New Transcoding

Technique for PDA Browsers, Based on Content Hierarchy. In Proceedings of the 4th
International Symposium on Mobile HCI, 2002.

8. Milic-Frayling, N.; Sommerer, R.: SmartView: Flexible viewing of web page contents.
Poster presentation at the WWW11 conference, 2002.

9. Buyukkokten, O.; Garcia-Molina, H.; Paepcke, A.: Seeing the whole in parts: Text
summarization for web browsing on handheld devices. In Proceedings of the WWW10
conference, Hong-Kong, 2001.

10. Chen, Y.; Ma, W.; Zhang, H.: Detecting Web Page Structure for Adaptive Viewing on
Small Form Factor Devices. In Proceedings of the WWW12 conference, 2003.

11. Ceri, S.; Fraternali, P.; Bongio, A.; Brambilla, M.; Comai, S.; Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, ISBN 1558608435, 2003.

12. Vdovjak, R.; Frasincar, F.; Houben, G.J.; Barna, P.: Engineering Semantic Web
Information Systems in Hera. In Journal of Web Engineering, Vol.2 No.1&2, RP, 2003.

13. AMACONT Project: http://www-mmt.inf.tu-dresden.de/english/Projekte/AMACONT/
14. Fiala, Z.; Hinz, M.; Meißner, K.; Wehner, F.: A Component-based Approach for Adaptive,

Dynamic Web Documents. In Journal of Web Engineering, Vol.2 No.1&2, RP, 2003.
15. Fiala, Z.; Hinz, M.; Wehner, F.: An XML-based component architecture for personalized

adaptive web applications. In Workshop Personalisierung mittels XML-Technologien,
Berliner XML Tage, Pages 370 - 378, 2003.

16. Fiala, Z.; Hinz, M.; Houben, G.; Frasincar, F.: Design and Implementation of Component-
based Adaptive Web Presentations. In Proceedings of the 19th Annual ACM Symposium
on Applied Computing, 2004.

17. Klyne, G.; Reynolds, F.; Woodrow, C.; Ohto, H.; Hjelm, J.; Butler, M.; Tran, L.:
Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0. W3C
Recommendation 15 January 2004.
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

18. Wireless Application Group: User Agent Profile Specification. Open Mobile Alliance
WAP Forum 2001.

19. User Interface Markup Language (UIML): Specification Draft Language, Version 3.0,
February 2002. http://www.uiml.org/specs/

20. Puerta, A; Eisenstein, J.: XIML: A Universal Language for User Interfaces. In
Proceedings of the Conference on Intelligent User Interfaces, 2002.

21. Shen, W.: An efficient Algorithm for Incremental Learning of Decision Lists. Technical
Report, USC-ISI-96-012, University of Southern California, 1996.

22. Jörding, T., Meissner, K.: Intelligent Multimedia Presentations in the Web: Fun without
Annoyance. In Proceedings of the WWW7 conference, Brisbane, 1998.

http://www.microsoft.com/windowsmobile/products/pocketpc/default.mspx
http://www.opera.com/products/smartphone/smallscreen/
http://www.palmos.com/dev/tech/webclipping/resources.html
http://www-mmt.inf.tu-dresden.de/english/Projekte/AMACONT/

