
Design and Implementation of Component-based Adaptive
Web Presentations

Zoltán Fiala Michael Hinz
Dresden University of Technology

Mommsenstr. 13, D-01062
Dresden, Germany

{zoltan.fiala, mh5}@inf.tu-dresden.de

Geert-Jan Houben Flavius Frasincar
Technische Universiteit Eindhoven

PO Box 513, NL-5600 MB
Eindhoven, The Netherlands

{g.j.houben, f.frasincar}@tue.nl

ABSTRACT
Engineering adaptive Web applications implies the devel-
opment of content that can be automatically adjusted to
varying client devices and user preferences. To meet this
requirement, the AMACONT project recently introduced
a component-based XML document format. Configurable
document components encapsulating adaptive behavior and
layout are used on different abstraction levels in order to
support flexible reuse for effective Web page generation.
This paper focuses on the process of designing and imple-
menting such component-based adaptive Web presentations.
Based on the model-driven specification framework from the
Hera project, different phases of adaptation design are iden-
tified and their realization using AMACONT components
is explained. Finally, a pipeline-based document generator
for dynamically publishing component structures to differ-
ent Web output formats is described.

Keywords
Component-based Web Engineering, Adaptive Hypermedia,
Design Methods

1. INTRODUCTION
The WWW’s change to a personalized ubiquitous medium of
communication and cooperation necessitates the quick gen-
eration and delivery of up-to-date information that is auto-
matically adapted to the appropriate presentation interface
and user preferences. However, conventional document for-
mats for the Web are hardly applicable for meeting this chal-
lenge. Their lack of support for the separation of content,
structure, and layout prevents the flexible component-like
reuse of fine-granular functional, semantic, and layout ele-
ments. Moreover, no mechanisms are provided for describing
in a generic way the adaptive behavior and presentation of
reusable pieces.

Recently, different approaches for modeling and engineer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

ing adaptive hypermedia and Web systems have emerged.
As one of the most significant contributions we mention the
AHAM reference model [1]. By capturing common abstrac-
tions of existing solutions, it provides a sound basis to de-
scribe, characterize, compare, and create adaptive hyperme-
dia systems (AHS). A detailed survey on AHS development
can be found in [3]. Different domains of AHSs, such as edu-
cational hypermedia, on-line information systems, informa-
tion retrieval etc. are identified and representative systems
are mentioned. Still, most solutions concentrate on the con-
ceptual modeling and design process of adaptive hypermedia
systems, not supporting the flexible reuse of adaptable im-
plementation artefacts in a component-wise manner.

There are only a few approaches towards reusing implemen-
tation entities in hypermedia development. The WebCom-
position Markup Language [8] enables the component- based
development of Web applications. Westbomke [15] proposes
a formal XML-grammar for the implementation and presen-
tation of platform-independent structured hypermedia doc-
uments. Still, adaptation to device capabilities and changing
user preferences is not a central aspect of these approaches.

To address this problem, the AMACONT project recently
introduced a component-based XML document format [5],
[6]. It enables to compose adaptive Web applications by the
aggregation and linkage of reusable document components
that encapsulate adaptive content, behavior, and layout on
different abstraction levels. Furthermore, a pipeline-based
document generator for dynamically transforming adaptable
component structures to different Web output formats was
developed.

Although component-based reuse is crucial to Web Engi-
neering, the development of adaptive Web and hypermedia
applications out of components is a complex process that
also necessitates to utilize systematic and disciplined design
methodologies and specification frameworks. Such frame-
works allow specifying hypermedia applications in an ap-
propriate level of abstraction depending on both different
stages of the engineering project (e.g. requirements analy-
sis, design and implementation), and different dimensions of
the problem area (e.g. data modeling, navigation modeling,
presentation modeling) [14]. Recently, significant research
on design and process models for hypermedia and Web ap-
plications has been done. Approved hypermedia design prin-
ciples, such as those captured in OOHDM [13] or RMM [9],

have been even enhanced with the notions of adaptation and
personalization in a further extension of OOHDM [12] or the
RMM-based Hera methodology [7],[14].

Instead of suggesting yet another methodology, this work
aims at the adoption of existing hypermedia design models
for developing component-based adaptive Web applications.
The main reason for this strategy is the observation that
(due to the abstraction gap between high-level hypermedia
design models and low-level (AMACONT) implementation
entities) even different methodologies can be utilized to de-
sign component-based adaptive Web applications. The focus
of this paper lies on using the model-driven Hera method-
ology [14] in the AMACONT context, allowing to develop
data-driven adaptive Web applications (e.g. online-shops, e-
galleries, Web sites of institutions etc.) from reusable com-
ponents. Considering in a subsequent way the steps iden-
tified by Hera, it is shown how they can be applied to sys-
tematically realize adaptive Web presentations out of AMA-
CONT implementation artefacts. One of the most interest-
ing aspects is the question how different adaptation issues
can be targeted in each design step.

The rest of this paper is structured as follows. Section 2
provides an overview of the component-based document for-
mat of the AMACONT project, especially focusing on how
it supports adaptation. Along the lines identified by the
model-driven Hera methodology, Section 3 deals with differ-
ent phases of designing and implementing component-based
adaptive Web applications. Section 4 introduces a pipeline-
based modular document generator for dynamically trans-
forming component structures to different Web output for-
mats, and also explains how adaptivity can be supported
during the document generation process. Finally, Section 5
concludes the paper and suggests future research directions.

2. ADAPTIVE WEB COMPONENTS
The component-based document format of the AMACONT
project allows to build device-independent Web applications
by aggregating and linking configurable document compo-
nents. These components are documents or document frag-
ments and instances of an XML grammar that represent
adaptable content on different abstraction levels (Figure 1).
The abstraction levels cover the full spectrum of granulari-
ties from single media items to coarse documents. Compo-
nents’ interfaces are described by metadata specifying their
properties and their adaptive behavior. The format was de-
fined using XML Schema.

2.1 Component Levels
On the lowest level there are media components encapsulat-
ing concrete media assets. These comprise text, structured
text (e.g. HTML), images, sound, video, Java applets, and
this media list may be extended arbitrarily. Besides techni-
cal properties described by MPEG-7 descriptors, additional
content management information is provided, too. The sec-
ond level combines media components belonging together se-
mantically - e.g. an image with a textual description - into
so called content unit components (content units). Defin-
ing such collections is a key factor of reuse. The spatial
adjustment of contained media components is described by
client-independent layout properties, thus abstracting from
the exact resolution and presentation style of the current

E-Learning Course

Media
Components

Document
Components

Chapter 2

Content Unit

Image with

textual

explanation

Content Unit

Components

Hyperlinks

Content Unit

Image with

audio

explanation

Content Unit

...

Overview

Chapter 1

Fact

Example

Text
Text

Text
Video

Text
Style-

sheetText
Image

Text
Media

...

Introduction

Hyperlink

Aggregation

Figure 1: The document model.

display (see Section 2.2.2). Thirdly, document components
are specified as parts of Web presentations playing a well-
defined semantic role (e.g. a news column, a product presen-
tation or even a Web site). They can either reference content
units, or aggregate other document components. The result-
ing hierarchy describing the logical structure of a Web site
is strongly dependent on the application context. Again,
the spatial adjustment of subcomponents is described in a
client-independent way. Finally, next to these three levels,
the orthogonal hyperlink view defines links spanned over all
component levels. Uni- and bidirectional typed hyperlinks
based on the standards XLink, XPath and XPointer are sup-
ported.

2.2 Adaptation Support
The component-based document format aims at support-
ing adaptation by two mechanisms [6]. Firstly, it enables
to encapsulate adaptation logic in components on different
abstraction levels. Secondly, it allows describing the visual
aspects of components by client-independent layout descrip-
tors that can be automatically adapted to different output
formats. In this section these two mechanisms are shortly
summarized. Their utilization within the development pro-
cess of adaptive Web presentations is explained in Section
3.

2.2.1 Describing Adaptive Behavior
To define adaptive behavior in a generic way, each compo-
nent may include a number of variations. As an example,
the definition of an image component might include (in its
body) two variants for color and monochrome displays. Sim-
ilarly, the number, structure, arrangement, and linking of
subcomponents within a document component can also vary
depending on device capabilities or user preferences. The de-
cision which alternative is selected is made during document
generation by an XSLT stylesheet (see Section 4) according
to a selection method which is declaratively described in
the component’s header. Such selection methods are chosen
by component developers at authoring time and can repre-
sent arbitrarily complex conditional expressions parameter-
ized by user model parameters. This separation of describ-
ing variants (in the component body) and adaptation logic
(in the component header) allows reusing a given compo-
nent in different adaptation scenarios. The XML-grammar
for selection methods allows the declaration of user model

parameters, constants, variables, and operators, as well as
complex conditional expressions (such as if or case) of arbi-
trary complexity. The processing XSLT stylesheet acts as an
interpreter for this declarative “selection method language”.
Note that alternatives can be declared for components of all
granularities, thus allowing to define adaptive behavior on
different abstraction levels. A concrete example for defining
component variants and selection methods will be shown in
Section 3.2.

2.2.2 Automatic Layout Adaptation
As already mentioned, the document format allows to de-
scribe the spatial adjustment of subcomponents within their
container components by client-independent layout proper-
ties. Inspired by the layout manager mechanism of the Java
language (AWT and Swing), they describe a size and client-
independent layout allowing to abstract from the exact res-
olution of the display or the browser’s window. The ex-
act rendering of media objects is done by XSLT stylesheets
transforming these abstract layout descriptions into concrete
output formats. At current time four layout managers are
defined. BoxLayout allows multiple components to be laid
out either vertically or horizontally. BorderLayout arranges
components to fit in five regions: north, south, east, west,
and center. OverlayLayout allows to present components
on top of each other. Finally, GridLayout enables to lay out
components in a grid with a configurable number of columns
and rows. Three XSLT stylesheets for automatically con-
verting those descriptions to XHTML, cHTML and WML
output were realized. A concrete example for defining adap-
tive layout will be shown in Section 3.3.

3. HERA-BASED DEVELOPMENT
The format introduced above provides Web engineers with
reusable adaptive implementation artifacts. However, devel-
oping adaptive Web applications is a quite complex process
that has to be based on systematic, disciplined methodolo-
gies and associated design models. By identifying crucial
phases of Web development, an approach based on such de-
sign models helps designers and programmers to proceed in
a structured way.

This section focuses on developing component-based adap-
tive Web applications according to the model-driven de-
sign methodology and specification framework of the Hera
project. Hera is suitable for this undertaking for different
reasons. Firstly, its main focus lies on the specification
of highly adaptive Web presentations. Besides aspects of
adaptability (adaptation during presentation generation to
different device and user profiles), aspects of adaptivity (dy-
namic adaptation within the generated presentation itself)
are also considered. Secondly, since it utilizes formalized
XML descriptions, an automatic translation of Hera schemas
to XML-based AMACONT components appears to be pos-
sible. According to the design phases identified by Hera, we
can now show how those concepts can be utilized to system-
atically create, configure, aggregate, and link AMACONT
components to complex adaptive Web applications.

3.1 Conceptual Design
The first step of the Hera methodology aims at representing
the application domain using conventional conceptual mod-
eling techniques. It results in the conceptual model (CM)

String

Technique Artifact

Painting

Creator

Painter

String

String

String

String Integer

Image

creates

created_byexemplified_by
name yearname

description

name

biography

paints

painted_by

picture

subPropertyOf

subClassOf

Property

exemplifies

Figure 2: CM example.

consisting of a hierarchy of concepts, their attributes, and
relationships. Concept attributes are typed. Besides ba-
sic types (e.g. Integer and String), multimedia types (e.g.
Image, Audio, V ideo) are also allowed, enabling to assign
representative media items to concept attributes. The CM is
expressed using RDFS [2]. Figure 2 depicts the conceptual
model of a Web application presenting an online painting
gallery.

When developing adaptive Web applications from AMA-
CONT components, the conceptual design step as proposed
by Hera has to be accompanied by the creation/retrieval
of media instances representing concept attributes. Fur-
thermore, in order to provide different device and output
formats, component authors also have to reason about al-
ternative media instances with different quality (concerning
bandwidth, color depth, size etc.). According to Section
2, AMACONT prescribes that these media instances have
to be encapsulated to media components (with variants) by
describing them with corresponding MPEG7 descriptors.

3.2 Application Design
The application design step of Hera deals with the logical,
structural, and navigational aspects of the Web presenta-
tion. The concepts introduced by the CM are translated
into so called slices. A slice is a meaningful presentation
unit of some media items, which can group both content
attributes and other slices. There are two types of slice
properties (relationships): slice composition (a slice includ-
ing another slice) and slice navigation (a hyperlink abstrac-
tion between two slices). The most primitive slices represent
concept attributes. The most complex ones (called top level
slices) correspond to pages, which contain all the informa-
tion present on the user’s display at a particular moment.
Figure 3 depicts a composite slice presenting the concept
painting. The description of a painting contains the actual
picture, its name, the year when it was painted, as well as
(from the bottom slice) the information about its painter.
Besides the graphical representation (also called Application
Diagram) there is also an RDFS-based formalization of the
AM.

3.2.1 Adaptation design in the AM
In order to adjust slice structures to device profiles and
(changing) user preferences, Hera allows extending the AM
with adaptation issues. Two types of adaptation or per-
sonalization are distinguished: adaptability and adaptivity.
Adaptability (also known as static adaptation) means that
the generation process is based on available information that

describes the situation in which the user will use the gener-
ated presentation. Adaptivity (also mentioned as dynamic
adaptation) is the kind of adaptation included in the gen-
erated adaptive hypermedia presentation. To put it sim-
ple, in the second case the hypermedia presentations them-
selves change while being browsed. This dynamic nature
of adaptivity is supported by feedback mechanisms updat-
ing the user model according to the user’s interactions with
the presentation [1]. (Though not being a central issue
of this paper, a mechanism for tracking user interactions
in component-based adaptive Web applications will be ex-
plained in Section 4.1.)

Generally, different adaptation issues can be considered at
application design. Firstly, it makes sense to adjust the
coarse navigational structure to varying device (e.g. desk-
top computer, PDA, cell phone etc.) or user profiles. De-
pending on different device and user profiles one can decide
which concepts should be presented and how they should be
assigned to different interlinked slices. Secondly, the popu-
lation of each specified slice with media items can be person-
alized, too. According to the media preferences and/or de-
vice capabilities of different users, different media types for
presenting the same concept can be utilized. As an exam-
ple, take the case of two customers, one of them preferring
multimedia content, the other rather textual information.
When presenting a painter’s biography, the first one could
be shown a video and an audio sequence, the second one
a detailed textual description. Finally, dynamic adaptation
(adaptivity) can also be targeted at this step. For example,
different versions of a painter’s biography could be presented
in accordance with the user’s changing knowledge on that
painter: a long version at the user’s first visit and a short
one at his later visits.

In order to specify adaptation Hera prescribes that one asso-
ciates appearance conditions to slice references [14]. These
are Boolean conditions using attribute-value pairs from the
user/platform. Two kinds of AM adaptation are enabled:
conditional inclusion of slices and link hiding. Conditional
inclusion means that a slice is included (and therefore vis-
ible) when it has a valid condition. Similarly, link hiding
refers to the mechanism that a link is included when its des-
tination slice is valid. Note that Figure 3 contains two ap-
pearance conditions: the first one (mentioning wap-phone)
supports adaptability by forbidding the inclusion of picture
for WAP phones: the use of up shows that the condition
refers to the (static) user/device profile. The second one
(mentioning biography) defines adaptivity by presenting dif-
ferent versions of a painter’s biography depending on the
user’s knowledge on those painter (as captured in the user
model, here refered to by um).

3.2.2 Realization with AMACONT components
There are important analogies between (the concepts of)
Hera slices and AMACONT document components. Both
represent meaningful presentation units bearing also some
semantic role (e.g. painting, painting technique, newspaper
article) and are recursive structures enabling an arbitrary
depth of hierarchy. Moreover, both top-level slices and top-
level document components correspond to pages to be pre-
sented on the users display. Finally, both may contain adap-
tation issues according to device profiles and user profile

year

name

painted_by

picture

painter

painting

painted_by

main

painter

um.biography = false um.biography = true

up.wap_phone = false

main1 main2

Figure 3: AM slice example.

parameters.

Nonetheless, there are also significant differences. Firstly,
in contrast to slices, document components also encapsulate
information on their layout. However, as application design
does not deal with presentation issues, the specification of
these layout properties can (and should) be postponed to
a later stage of the development process (see Section 3.3).
Secondly, whereas AM slices aim at defining the structure
of presented concepts on the schema level (i.e. independent
of concrete instances of those concepts), AMACONT com-
ponents represent reusable implementation entities on the
instance level. To bridge this gap it is meaningful to intro-
duce the notion of AMACONT component templates. These
are component skeletons that declare the structural, behav-
ioral, and layout aspects of components independent of their
concrete content. For example, a component author might
create a generic component template for presenting painters.
This template can be instantiated for specific paintings by
being filled with media instances dynamically queried (re-
trieved) from a data source. We note that the use of a
template mechanism is especially useful in data-driven Web
Information Systems (WIS) and has already been utilized
e.g. by the Web Modeling Language WebML [4].

The mentioned analogies allow component authors to specify
the aggregation hierarchy of component templates accord-
ing to the AM in a straightforward way. Firstly, top-level
slices have to be mapped to top-level document components.
Secondly, by unfolding slice aggregation relationships in a
top-down manner, subslices and their attributes have to be
mapped to subcomponents according to the following rules:

1. Concept attributes have to be mapped to media com-
ponents. Integer and String attributes can be as-
signed to text components, media attributes to corre-
sponding media components (image, audio, video etc.).

2. Slices containing concept attributes from only a single
concept have to be mapped to single document com-
ponents containing a content unit that aggregates the
corresponding media components.

3. Slices referring to concept attributes and subslices from
different concepts have to be mapped to composite

document components containing child document com-
ponents for each aggregated subslice. For those sub-
slices this mapping process has to be performed recur-
sively.

As a final step, slice navigation properties have to be mapped
to hyperlinks between component templates. The follow-
ing XML code depicts the component aggregation hierarchy
which was specified according to the slice example shown
in Figure 3. Note that it still does not include any adap-
tation logic. (For better readability, there are some minor
deviations between the syntax in this paper and the actual
AMACONT XML-grammar. The layer attribute of com-
ponents specifies whether they are document components
(DC), content units (CU) or media components (MC).)

<PaintingComp name="Painting" layer="DC">
...
<PaintingInfoComp name="PaintingInfo" layer="DC">
...
<ImageAndTextComp name="PaintingAttr" layer="CU">
...

<ImageComp name="PPicture" layer="MC"> ...
<TextComp name="PName" layer="MC"> ...
<TextComp name="PYear" layer="MC"> ...

</ImageAndText>
</PaintingInfoComp>
<PainterComp name="Painter" layer="DC">
...
</PainterComp>

</PaintingComp>

If the AM specifies adaptation aspects via appearance con-
ditions, these have to be translated to AMACONT compo-
nent variants and corresponding selection methods (as in-
troduced in Section 2.2.1). This mapping can be also done
in a straightforward way. Whenever a slice is provided with
a Boolean appearance condition, the component assigned to
its parent slice has to be split up into two variants. While
the first variant includes the subcomponent assigned to the
conditional slice, the second one excludes it. Furthermore,
according to the slice condition a selection method in the
IF-THEN-ELSE style has to be composed. As an example,
following XML code depicts the component-based realiza-
tion of the adaptivity example shown in Figure 3. Depend-
ing on (the state of) the user’s knowledge different variants
of a painter’s biography are provided.

<PainterComp name="Painter" layer="DC">
<MetaInformation>
...

</MetaInformation>
<Variants>
<Variant name="Bio_Seen">
...

</Variant>
<Variant name="Bio_NotSeen">
...

</Variant>
</Variants>

</PainterComp>

The corresponding selection method can be specified in the
header (MetaInformation) of that component as shown
below:

Figure 4: Hera presentation diagram example.

<MetaInformation>
...
<AdaptiveProperties>
<If>

<Expr operator="equals">
<UserParam>um.biography</UserParam>
<Const>true</Const>

</Expr>
<Then res="Bio_Seen"/>
<Else res="Bio_NotSeen"/>

</If>
<AdaptiveProperties>

...
</MetaInformation>

As a consequence, during document generation (see Section
4) the processing XSLT style sheet substitutes the variable
um.biography by its Boolean value from the current user
model, performs the selection method and determines the
proper variant of the PainterComp component. As this
variant might also have varying subcomponents, the style
sheet works recursively. After the component variants to be
included have been determined, link adaptation can be real-
ized, too. As mentioned in Section 3.2.1, only links pointing
to a valid (i.e. inserted) component or component variant
are included.

3.3 Presentation Design
The presentation design step of Hera bridges the logical level
and the actual implementation by introducing the imple-
mentation independent Presentation Model (PM). Comple-
mentary to the AM, where the designer is concerned with
organizing the overall presentation structure and identifying
what attributes from entities are to be included in slices, the
PM specifies how and when the identified slices should be
displayed. The PM is described in Hera by a presentation di-
agram (PD) consisting of regions and relationships between
them [7]. During presentation design the slices introduced in
the AM are mapped to regions. The presentation diagram
specifies the organization of regions in a graphical way1 by
means of region relationships. Three types of region rela-
tionships exist: navigational, spatial, and temporal. As an
example, Figure 4 depicts a possible presentation diagram
for the painter slice by arranging the text and picture at-
tributes in a horizontal way.

3.3.1 Realization with AMACONT components
The aggregation hierarchy of component templates was de-
termined at application design, as we saw in Section 3.2.2.
Now, (according to the guidelines of the PM) component au-
thors are expected to specify the layout attributes of those
component templates. As mentioned in Section 2.2.2, the

1At current time there is no XML-grammar for expressing
PDs in a formal way.

component-based document format provides an XML-based
mechanism for specifying the spatial adjustment of subcom-
ponents within their container components in a size and
client-independent way. Those abstract layout definitions
support the automatic conversion of component structures
to presentations in different output formats (such as WML,
cHTML or xHTML). Thus, the spatial relationships between
regions defined in the PM (or PD) have to be mapped to
such component layout descriptions2.

Again, this mapping happens in a straightforward way. Be-
ginning at top-level document components and visiting their
subcomponents recursively, one has to declare for each com-
ponent (variant) how its immediate subcomponents are ar-
ranged. The appropriate layout descriptors are added to
the meta-information section of each component’s header.
As an example, the presentation diagram shown in Figure 4
can be mapped to the layout manager of the PainterInfo

component template according to a horizontal BoxLayout

scheme:

<MetaInformation>
...
<LayoutProperties>
<BoxLayout orientation="xAxis">

<ComponentRef ratio="30%" name="PainterText">
<ComponentRef ratio="70%" name="PainterImage">

</BoxLayout>
</LayoutProperties>
...

</MetaInformation>

Note that there are also other adaptation aspects to be con-
sidered during presentation specification. Firstly, since to-
day’s client devices are characterized by varying technical
parameters and support different output formats, the in-
serted media components have to be also adjusted based on
their qualitative properties, such as bit rate, color depth,
resolution etc. Secondly, depending on the layout prefer-
ences of different user stereotypes (children, adults, visu-
ally impaired users etc.), different layout elements deter-
mining the corporate design of the Web presentation (e.g.
font sizes, logos, buttons, background images etc.) have to
be provided, too. In order to consider such adaptation as-
pects, additional variants for selected media components as
well as corresponding selection methods have to be speci-
fied. Note that such variants can be defined even after the
declaration of layout managers: since layout managers of
a given component reference only its immediate subcompo-
nents, these subcomponents may have variants according to
different adaptation aspects, too.

4. DOCUMENT GENERATION
The previous section dealt with the engineering process of
adaptive component-based Web presentations. According to
the Hera methodology, different phases of adaptation design
were identified and their realization with AMACONT com-
ponents was explained. This section focuses on the process
of document generation and describes how the developed

2As the AMACONT document format does not support ex-
pressing temporal presentation aspects, we currently limit
presentation design to only navigational and spatial aspects.

Document Generation

Input Doc.

containsall

variantsand

adaptation

options

Transform

adaptation

to a certain

client class

Rendering

generates

the concret

document

format

Pipeline

Transform

adaptation

according to

user

preferences

Transform

adaptation

to specific

technical

capabilities

Server-Side Pipeline-Cache

User model

User
Preferences

Technical
Client Capabilities

HTML

cHTML

WML

Component

Repository

Request

Figure 5: Pipeline-based document generation.

AMACONT components are dynamically adjusted to vary-
ing user preferences and client devices.

Document generation is based on a stepwise pipeline con-
cept, as illustrated by Figure 5. The input of the document
generator is a complex component encapsulating all possi-
bilities concerning its content, layout, and structure. It is
created by instantiating a component template according to
a dynamic user query. According to the user/platform pro-
file (which is stored on the server according to a CC/PP [11]
vocabulary), it is subdued to a series of XSLT transforma-
tions, each considering a certain adaptation aspect by means
of the configuration and selection of component variants.

Instead of evaluating all adaptation rules “at once”, the gen-
eration process can be divided into more steps in order to
reuse partially adapted documents for similar requests. Fig-
ure 5 shows a possible scenario with three steps, namely
adaptation to a certain client class (e.g. PDA, cell phone or
desktop browser), then to semantic user preferences (inter-
ests, knowledge level, media preferences etc.), and finally to
specific technical capabilities (e.g. bandwidth, display res-
olution). Although the three XSLT stylesheets are identi-
cal, they are parameterized differently, so that each of them
processes only specific decision rules. As an example, the
first one evaluates only rules referencing variables describ-
ing the client class and leaves other rules unprocessed. E.g.
when the same document is requested by two PDA users,
the output of this transformer can be reused, even if those
users have different preferences concerning their interests or
knowledge level. After all adaptation rules have been evalu-
ated and the final static component hierarchy - without vari-
ants - has been determined, a Web document in a specific
output format (e.g. XHTML, cHTML, WML) is generated.
This concrete rendering of components happens automati-
cally. The document generator was realized based on the
publishing framework Cocoon [16].

4.1 Supporting Adaptivity During Document
Generation

The document generation architecture as shown in Figure
5 realizes adaptability. It adjusts input document compo-

nents according to different device profiles and user model
parameters. However, in order to provide adaptivity, too,
this architecture has to be extended. Firstly, a mechanism
for triggering user model updates according to user interac-
tions is required. Secondly, an adaptation engine perform-
ing those user model updates has to be utilized. In order
to track user interactions (following links, starting videos,
interrupting downloads etc.), client-side mechanisms based
on JavaScript routines were developed. These can then be
assigned to components at authoring time and are automat-
ically inserted and configured during document generation.
They gather information on user interactions and send it to
the server according to a specific CC/PP profile [6]. By eval-
uating interaction history lists, suggestions on users’ prefer-
ences and knowledge can be made and parts of the user
model can be updated or specialized. In a developed proto-
type application for product presentation this specialization
is performed by the incremental learning algorithm CDL4.
In the TELLIM project [10] we proved that this algorithm
was extremely useful in adaptive multimedia product pre-
sentations. However, since the CC/PP profiles for storing
interactions, user models, and device capabilities provide a
well-defined interface, different adaptation engines may be
utilized in the future.

5. CONCLUSION AND FUTURE WORK
In this paper we have demonstrated how adaptive Web pre-
sentations can be constructed in a component-based way,
combining the strengths of the model-driven design method-
ology and specification framework of the Hera project and
the component-based XML document formats of the AMA-
CONT project. We have shown how during the phases of
design and implementation, different aspects of adaptation
can be dealt with. We have illustrated how both adaptabil-
ity and adaptivity can be considered in the design and how
subsequently a pipeline-based document generator can im-
plement the process of dynamically publishing component
structures in different output formats. As matters of future
work, we mention:

• the semi-automatic translation of Hera’s XML schemas
to AMACONT component templates

• extending the Hera framework with the AMACONT
pipeline in order to utilize its presentation generation
capabilities

• the construction of a graphical tool that supports the
creation of Presentation Diagrams and outputs AMA-
CONT components

• the specification of user interaction within the design
models

6. REFERENCES
[1] P. D. Bra, G. J. Houben, and H. Wu. AHAM: A

dexter-based reference model for adaptive hypermedia.
In HYPERTEXT ’99, Proceedings of the 10th ACM
Conference on Hypertext and Hypermedia, Darmstadt,
Germany, pages 147–156. ACM, 1999.

[2] D. Brickley and R. Guha. RDF Vocabulary
Description Language 1.0: RDF Schema. W3C
Working Draft, 10 October 2003.

[3] P. Brusilovsky. Adaptive hypermedia. User Modeling
and User Adapted Interaction, 11:87–110, 2001.

[4] S. Ceri, P. Fraternali, and A. Bongio. Web modeling
language (webml): a modeling language for designing
web sites. In 9th International Conference on the
World Wide Web (WWW9), Amsterdam, 2000.

[5] Z. Fiala, M. Hinz, K. Meissner, and F. Wehner. A
component-based approach for adaptive dynamic web
documents. Journal of Web Engineering, Rinton
Press, 2(1&2):058–073, September 2003.

[6] Z. Fiala, M. Hinz, and F. Wehner. An XML-based
component architecture for personalized adaptive web
applications. In Workshop Personalisierung mittels
XML-Technologien, Berliner XML Tage, pages
370–378, 2003.

[7] F. Frasincar, G. J. Houben, and R. Vdovjak. An
RMM-based methodology for hypermedia
presentation design. In Advances in Databases and
Information Systems, 5th East European Conference,
ADBIS 2001, Vilnius, Lithuania, pages 323–337, 2001.

[8] M. Gaedke, C. Segor, and H.-W. Gellersen. WCML:
Paving the way for reuse in object-oriented web
engineering. In ACM Symposium on Applied
Computing (SAC2000), 2000.

[9] T. Isakowitz, E. Stohr, and P. Balasubramanian.
RMM: A methodology for structured hypermedia
design. Comm. of the ACM, 38(8):34–44, 1995.

[10] T. Jörding and K. Meissner. Intelligent multimedia
presentations in the web: Fun without annoyance. In
Seventh International Conference on the World Wide
Web (WWW7), Brisbane, Australia, 1998.

[11] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto,
J. Hjelm, M. Butler, and L. Tran. Composite
Capability/Preference Profiles (CC/PP): Structure
and Vocabularies. W3C Working Draft, 2003.

[12] G. Rossi, D. Schwabe, and R. Guimaraes. Designing
personalized web applications. In WWW10, The
Tenth International Conference on the World Wide
Web, Hong Kong, 2001.

[13] D. Schwabe, G. Rossi, and S. D. J. Barbosa.
Systematic hypermedia application design with
OOHDM. In Hypertext ’96, The Seventh ACM
Conference on Hypertext, Washington DC, 1996,
pages 116–128. ACM, 1996.

[14] R. Vdovjak, F. Frasincar, G. J. Houben, and
P. Barna. Engineering semantic web information
systems in hera. Journal of Web Engineering, Rinton
Press, 2(1&2):003–026, 2003.

[15] J. Westbomke and G. Dittrich. Towards an xml-based
implementation of structured hypermedia documents.
Journal of Universal Computer Science,
8(10):944–956, 2002.

[16] C. Ziegeler and M. Langham. Cocoon: Building XML
Applications. New Riders, 2002.

