
Annotating Virtual Web Documents with DynamicMarks

Zoltán Fiala, Klaus Meißner

Dresden University of Technology
Heinz-Nixdorf Endowed Chair for Multimedia Technology

D-01062 Dresden, Mommsenstr. 13
[zoltan.fiala, kmeiss]@inf.tu-dresden.de

Abstract: Annotating Web pages facilitates document management and
collaboration on the WWW, and is also a key factor of user-driven metadata
creation on the Semantic Web. However, though there exists a broad number of
annotation systems for static HTML, none of them supports the pervasive
annotation of dynamically generated Web content. The DynamicMarks annotation
system introduced in this paper relies on a component-based document format for
personalized adaptive Web sites. It enables the fine-granular, ubiquitous annotation
of dynamically assembled pages by reversely mapping notes to reusable adaptive
content components. Moreover, annotating existing static HTML documents is
provided by automatically wrapping them to components. Beside locally stored
private remarks, shared annotations are also supported, allowing for pervasive
asynchronous communication on the Web.

1 Introduction

Creating Web annotations is an important aspect of document management and
collaboration on the WWW. Authors and readers mark Web pages in order to remember
things better, to communicate or to manage information assets more effectively. Popular
scenarios are e-learning applications supporting asynchronous communication between
students and tutors, distributed authoring systems allowing concurrent editing, but also
online product presentations enabling to send feedback to the system via personal
remarks. Within the scope of the Semantic Web, annotation technology gains even more
significance. Users’ notes attached to Web documents act as additional external metadata
that can be used to create individual navigation structures over existing resources, to
support search engines with personalized information, to easily locate items that have
been marked as relevant by other users etc.

Recently, a number of solutions for annotating static HTML pages (e.g. ComMentor
[RMW95], YaWaS [DV00], Annotator [OAM00], Annotea [KKP01] etc.) have been
developed. For such content an annotation is unambiguously identified by the URL of
the affected Web page and some offset parameters describing its correct position [DV00].

However, the intensive change of the WWW to a ubiquitous personalized medium
indicates the development of interactive Web sites that are automatically adapted to
different client devices and semantic user preferences. A fundamental way to meet this
requirement is the dynamic generation of virtual Web pages from separately stored
configurable, reusable pieces of content. A virtual document is a document for which no

persistent state exists and for which some or all of each instance is generated and
inserted at run time [WS99]. Typical virtual Web documents are individual product
offerings, Web-based learning environments with personalized didactical paths, columns
of electronic newspapers showing always up-to-date news for various end devices etc.
Watters et al. [WS99] mention important research scenarios for virtual documents, such
as generation, search, revisiting, versioning, authentication, reference and annotation.

Though there is a growing need to create annotations on different presentation views of
virtual documents using different devices, no existing annotation system manages this
challenge. Firstly, they have been exclusively developed for desktop Web browsers.
Secondly, since notes are not attached to the original content pieces, but to the volatile
Web pages presenting the final document view, they go lost, if those pages are updated
or if the same content is shown in a different context or layout on another Web page for
another user. Thus, annotating virtual Web documents necessitates significant changes to
today’s annotation technology.

Attaching annotations to arbitrary dynamic Web pages is impossible, as they are neither
persistent, nor do they contain adequate information on the origin, structure and
volatility of the presented data. However, if the content pieces to be inserted are
described, stored and composed in a structured way and sufficient information on this
structure is provided during page generation, the resulting pages can be annotated, too.
The main idea is to reversely map annotations to the inserted content.

To present this idea, this paper introduces an approach called DynamicMarks. It relies on
a component-based XML document format for device-independent adaptive Web
applications. Its key concept is the reverse mapping of annotations to fine-granular
adaptable content components using different clients. Moreover, by automatically
wrapping static HTML to monolithic components, the functionality of existing
annotation systems is provided, too. After a short introduction to the XML-based
document format the basic concepts and processes of DynamicMarks are described.

2 Basis: A Component-based Document Format

The document format introduced by the AMACONT project [Fi03] aims at composing
Web sites of configurable content components. These are documents or document
fragments, instances of a specific XML-grammar representing adaptable Web content on
different abstraction levels – see Figure 1. Web sites are constructed by aggregating and
linking components to complex document structures. During generation these document
structures are translated into Web pages in a specific output format adapted to a specific
user model or client. The document format was defined by XML Schema.

On the lowest level there are media components encapsulating media assets (text,
structured text, image, video etc.) by describing them with technical (MPEG-7) and non-
technical metadata. Note that even whole documents (such as HTML-pages) can be
handled as monolithic media assets, by automatically extending them with appropriate
metadata.

Online Newspaper

Media
Components

Document
Components

Music

Content Unit
Image with

textual
explanation

Content Unit
Components

Hyperlinks

Content Unit
Image with

audio
explanation

Content Unit

...

Charts

Text
Text

Text
Video

Text
Style-
sheetText

Image
Text

Media
...

Hyperlink
Aggregation

Article

Article

Politics

Stock Exchange

Figure 1: A Component-based Document Format

The second level combines media components belonging together semantically (e.g. an
image with textual description) to so called content units. The spatial adjustment of
contained media components is described by client-independent layout properties
abstracting from the exact resolution and presentation style of the current display. On the
next level, document components are specified as parts of Web presentations playing a
well defined semantic role (e.g. a news column, a product presentation or even a Web
site). They can either reference content units, or aggregate other document components.
The resulting hierarchy describing the logical structure of a Web site is strongly
dependent from the application context. Again, the spatial adjustment of subcomponents
is described in a client-independent way. Finally, the orthogonal hyperlink view defines
links spanned over all component levels. Uni- and bidirectional typed hyperlinks based
on the standards XLink, XPath and XPointer are supported.

The concrete structure shown in Figure 1 is just an example. Generally, arbitrary
component structures according to the level-based document format can be created.
Furthermore, beside static components (i.e. components with fixed content), component
templates can be used, too. These are component skeletons declaring the structural,
behavioral and layout aspects of components in a generic way that can be instantiated by
being filled with dynamically queried data. E.g. a component author might create such a
generic template for a news column that is filled with different content each day.

2.1 Document Generation

Document generation is based on a stepwise pipeline concept in order to achieve code
reuse and higher performance through caching mechanisms – see Figure 2. In the
beginning, a complex document is dynamically assembled from a component repository
according to a user’s request. It contains information about subcomponents to be
included and metadata describing adaptation rules. All possible presentation forms of the
component concerning content, layout, and structure are encapsulated.

Depending on the current user model it is subdued to a series of transformations. Each
step considers a certain aspect of adaptation by performing conversions to the document
(selection and configuration of components). Finally, a Web document in a specific
output format (HTML, cHTML, WML etc.) is generated. Figure 2 depicts a possible
pipeline with three steps, namely adaptation to a client class, to semantic user
preferences and lastly to specific technical capabilities. In Section 3.4 annotation
merging as a possible additional step of personalized document generation will be
introduced. The document generator was realized on the basis of the pipeline-based
publishing framework Cocoon [LZ02].

 </alay:LayoutManager>
 </ amet:LayoutProperties>
</ aco:MetaInformation>
<aco:Variants>
 < ="va 1 "ContentUnit" aco:Variant riant name " layer=
 <aco:MetaInformation>
 <amet:LayoutProperties>
 < alay:LayoutManager>
 <alay:OverlayLayout>
 <alay:ComponentRef pos
 <alay:ComponentRef pos
 </ alay:OverlayLayout>
 < /alay:LayoutManager>
 </ amet:LayoutProperties>
 </ aco:MetaInformation>
 <aco:SubComponents>
 < "Titel aco:AmaImageComponent name=
 <aco:MetaInform ation>
 <amet:MetaD "mediu ata type=
 <amet:Met "mediu aData type=
 Opel ntera</ > Fo b
 < > /amet:MetaData
 </aco:MetaInformation>

Document Generation

Input Doc.
contains all
variants and
adaptation
options

Transform
adaptation
to a certain
client class

Transform
generates
the concrete
document
format

Pipeline

Transform
adaptation
according to
user
preferences

Transform
adaptation
to specific
technical
capabilities

Server-Side Pipeline-Cache

User model

User
Preferences

Componen
Repository

Request

Technical
Client Capabilities

t

Figure 2: Pipeline-based Document Generation

3 The DynamicMarks Annotation System

DynamicMarks was developed to ubiquitously annotate Web pages basing on the
mentioned document format. Its underlying idea is to reversely map annotations to
components using different clients. Reuse of adaptable components in other scenarios
implies reuse of both content and annotations. Moreover, automatically wrapping static
HTML to monolithic media components provides existing annotation systems’
functionality. The basic processes of DynamicMarks are: annotation creation, location,
storage and insertion.

3.1 Annotation Creation

After a document was generated and presented, users can select parts of it and attach
personal remarks. However, in some scenarios it is meaningful to restrict annotations
only to selected areas of Web presentations. Take the case of dynamically generated
electronic shops, where it is unnecessary to annotate the page header or the navigation

pane. In DynamicMarks the author of a Web presentation can select certain components
to be annotatable. By default all components are annotatable.
Annotation creation features depend on the client, too. Whereas today’s popular desktop
HTML-browsers allow selecting and manipulating arbitrary parts of Web pages (or
components), most handheld browsers do not offer this capability. Moreover, text input
via handhelds is still a big challenge for users. Thus, the annotation creation interface has
to be adapted to client capabilities. In DynamicMarks two annotation scenarios, namely
desktop browsers and PDAs were examined.

Figure 3: Adaptation of the content and the annotation interface

The Web-based tool for annotation creation in dynamically assembled (X)HTML
documents was developed for today’s popular desktop browsers, e.g. Mozilla 1.0+,
Netscape 6.0+ and Internet Explorer 5.0+. The only requirement was the ability to
display frames and to support the DOM2 Range-functionality of JavaScript. As depicted
in Figure 3, arbitrary parts of documents might be selected. By clicking the “Annotate”
button an annotation to the selection can be created.

At present annotation types like text highlighting, emphasizing and underlining are
supported, but richer features, e.g. margin notes, drawings and multimedia annotations
will be examined in the future. Notes are shown by correctly positioned popup windows
realized in JavaScript.

PDA annotations require a different approach, since most handheld browsers do not
support the selection and manipulation of arbitrary documents parts. This problem is
solved by marking specific points of the presented Web content where annotations are
invited. During document generation, annotatable document components being inserted
in the output are automatically provided with small icons anchoring to separate pages
where annotations can be entered or viewed. Note Figure 3 presenting the same content
adapted to both presentation and annotation capabilities of different clients.

3.2 Annotation Location

Annotations created by users have to be attached not to volatile Web pages, but to
components serving as the main building blocks of those pages. For the sake of
reversibility during annotation location, information about source components must be
preserved across document generation. Therefore, tags parameterized by the
source components’ IDs are inserted in the generated output. While not influencing the
presentation view, they enable to unambiguously map annotations to components.

The following example demonstrates this idea. The table below depicts a media
component representing formatted text (on the left), the result of transforming it to
HTML (on the right), as well as a possible selection made in the WYSIWYG browser
view (in the right-bottom cell). Aided by the -tag representing structure
information in the generated output, the selection can be unambiguously mapped to the
component by the XPointer expression xpointer(string-range(//*[@id=’ft1’],““,14,8))
independent of any certain document format [De02]. (The id attribute contains the
component’s unique ID, the numbers 14 and 8 locate the first character and the length of
the selection.) For HTML pages these expressions are calculated by using the Range-
functionality of the DOM2 API provided by JavaScript. The corresponding functions are
automatically inserted in the generated output during document generation.

 This is bold and

 <I>bold-italic</I>

 text

<formattedText id="ft1">

 <formattedTextContent>

 This is <format class="bold">bold</format> and

 <format class="boldItalic"> bold-italic</format>

 text

 </formattedTextContent>

</formattedText>

Attaching annotations to components with unique IDs makes it also possible to assign
them to the underlying content that was used to create those components. However,
since creating or dynamically generating components from a knowledge base is a
concern of the authoring process of adaptive Web applications, this assignment is not
within the scope of this paper. (Current work in the authors’ research group deals with
the development of component-based adaptive Web presentations according to the
model-driven Hera methodology [FHV02] for engineering semantic Web Information
Systems.)

Note that the concept of inserting “hidden” structure information into the generated
presentation might be generalized for a broad number of dynamic document generation
systems, in order to support interoperability with DynamicMarks.

3.3 Annotation Storage

After being created and located, annotations are stored separately from content
components in a database (Annotation Repository) either on a server or the client.
However, the latter case is currently restricted to only desktop computers. One possible
scenario could be to use server-side repositories for shared annotations and client-side
repositories for private remarks. The XML-based metadata schema for annotation
storage is closely related to that introduced by Annotea [KKP01].

The server-side Shared Annotation Repository was prototypically realized on the basis of
the relational database MySQL, but an XML database implementation is planned for the
future. After an annotation is created and located on the client, its coordinates and
content are passed to a server-side JSP application, which determines annotation
metadata and contacts the database through JDBC. For the sake of simplicity, the client-
side Local Annotation Repositories for desktop computers also rely on local databases
accessed by locally running Web servers. The main difference between the two
repository types is the way they handle annotation insertion into dynamically generated
documents – see Section 3.4.

3.4 Annotation Insertion

Annotation insertion is the process of merging Web content with annotations. When
browsing a Web page the user is presented his previously made remarks. The place of
merging annotation in DynamicMarks mainly depends on where they are stored. While
server-side annotations supporting ubiquitous note sharing are inserted during document
generation on the server, private client-side notes are merged into completed Web pages
in the browser. Moreover, a combination of both scenarios is possible, too.

Document Generation

Input Doc.
contains all
adaptation
options

Transform
adaptation

Transform
Generates
concrete
document
format

Annotation
Merger

Shared
Annotation
Repository

Web-Page

Local
Annotation
Repository

a, b,

Transform
adaptation

User Preferences/Technical Device Capabilities

Figure 4: Server-side vs. Client-side Annotation Merging

3.4.1 Server-side Annotation Insertion

In the first case (Figure 4a) notes are inserted at configurable stages of the adaptation
pipeline into partially adapted XML documents. For this purpose, custom Cocoon
transformers (called Annotation Mergers) were developed, which perform
transformations on the DOM view of XML documents based on dynamic queries to the
Shared Annotation Repository. For the example shown in Section 3.2 the corresponding
partially processed XML-document would be “retagged” like this:

 …

 <formattedTextContent>

 This is <format class="bold">bold</format>

 <ANNOT annotID="19" …>

 and <format class="boldItalic"> bold</format>

 </ANNOT>

 <format class="boldItalic">-italic</format> text

 </formattedTextContent>

 …

Note that the result is still a valid XML fragment, even though the selection addressed a
non-valid range of the original XML component. (However, since annotations are stored
separately from components, the original component and the existing document structure
were not changed or broken.)

As the resulting code is independent of any output format, the visualization of
annotations (e.g. highlighting, underlining, emphasizing) has to be implemented for each
format separately. This can be done either by extending the stylesheets executing the last
step of document generation, or – in case of Web browsers capable of processing XSLT
stylesheets – also on the client side. Still, the resource intensive process of merging
annotations is executed uniformly for each device.

The modularity of the pipeline architecture enables to divide server-side annotation
insertion in even more steps. Consider storing both shared and personal annotations on
the server. At a large number of users sharing comments, it makes sense to separate the
insertion of shared and private annotations. By inserting shared comments at an earlier
stage, the result can be cached and reused for merging with personal annotations at a
later step. Generally, changes to the server-side annotation merging scenario can be
easily achieved by using the Annotation Merger at variable places in the pipeline.

To sum up, server-side annotation merging has the main advantage of supporting
different clients. Since notes are inserted and rendered during document generation, the
clients only need to display them without modifying the requested document. This is a
benefit for mobile clients with low computing capacity. Another advantage is the
possibility to cache annotated, partially adapted documents for reuse for subsequent
requests from different clients. Still, server-side annotation insertion causes significant
server-load and additional network communication.

3.4.2 Client-side Annotation Merging

On the contrary, client-side annotation (Figure 4b) merging inserts notes into completed
Web pages. Though supporting better privacy, it assumes the local storage of annotations
and browsers with enhanced document modification capabilities. At present it is
implemented for desktop computers. Again, the generated Web documents are
automatically provided with specific JavaScript functions performing annotation
insertion. By means of the SPAN-Tags introduced in Section 3.2 the correct place of
components can be exactly relocated in the HTML output. After resolving the XPointer
expressions the different kinds of annotations (underlining, emphasizing, highlighting)
are visualized by inserting corresponding HTML tags via JavaScript/DOM2-functions.

3.5 Annotating Existing Web pages

As already mentioned, DynamicMarks was primarily developed for annotating
documents based on the component-based format introduced in [Fi03]. However, - for
the sake of “downwards compatibility” with existing systems - it was a basic
requirement to annotate arbitrary static HTML pages, too.

Remind Section 2, where it was explained that even whole HTML-documents can be
automatically wrapped to monolithic media components (representing structured text) by
attaching appropriate metadata. For this purpose, the Cocoon-based document generation
pipeline can be extended with two initial “proxying” transformers. The first one cleans
up the requested HTML documents against malformedness and converts them to
XHTML by using JTidy. By a second XSLT transform specific component metadata
(e.g. a unique ID built from the document’s URL) as well as the mentioned JavaScript
functions performing annotation location and merging are inserted.

After this conversion the resulting component can be annotated by the desktop
annotation tool described in Section 3.1. Thus, the problem of locating annotations in
existing HTML-pages is reduced to annotation location in components.

4 Conclusion and Future Work

This paper briefly introduced DynamicMarks, a pervasive annotation system for adaptive
Web pages. It enables the ubiquitous annotation of dynamically generated Web content
by reversely mapping notes to reusable, adaptive content components. The key concepts
described in this paper have been prototypically implemented and are being verified.

At its current state, DynamicMarks is dependent from a specific document format.
Though it enables to annotate any existing static HTML page via desktop browsers, there
is no support for the pervasive annotation of arbitrary Web documents, yet.
Nevertheless, the main reason for this shortcoming is the fact that most of today’s Web
pages have not been designed to be presented on different clients.

Figure 5: Annotation-based Component Extraction

Inspired by the work of Hori et al. [Ho02] on annotation-based Web transcoding, current
research deals with the semi-automatic extraction of adaptable components from existing
(HTML) Web pages via annotations – see Figure 5. Fine-granular components can be
identified while users select and classify HTML fragments (by attaching structural
information) in an intuitive graphical way. Metadata gathered during this “annotation-
based wrapping process” can be used to adapt content to various document formats,
presentation and annotation interfaces.

Moreover, since text input via handhelds is still a big challenge for users, multimedia
annotation capabilities of portable devices (such as TabletPCs or PDAs) will be
examined. Finally, the additional server-load resulting from server-side annotation
merging has to be properly quantified.

References

[De02] DeRose, S.; Daniel, R.; Grosso, P.; Maler, E.; Marsh, J.; Walsh, N.: XML Pointer
Language (Xpointer). W3C Working Draft, http://www.w3.org/TR/xptr/, 2002

[DV00] Denoue, L.; Vignollet, L.: An annotation tool for Web-browsers and its applications to

information retrieval. RIAO2000, Paris, 2000

[FHV02] Frasincar, F.; Houben, G.J.; Vdovjak, R.: Specification Framework for Engineering

Adaptive Web Applications. The Eleventh International Conference on the World
Wide Web (WWW11) 2002

[Fi03] Fiala, Z.; Hinz, M.; Meissner, K.; Wehner, F.: A Component-based Approach for

Adaptive, Dynamic Web Documents. The Twelfth International Conference on the
World Wide Web (WWW2003), 20-24 May, Budapest, 2003

[Ho02] Hori, M.; Ono, K.; Koyanagi, T.; Abe, M.: Annotation by Transformation for the

Automatic Generation of Content Customization Metadata. Pervasive 2002, 2002

[KKP01] Kahan, J.; Koivunen, M.; Prud’ Hommeaux, E.: Annotea: an Open RDF Infrastructure

for Shared Web Annotation. Tenth International World Wide Web Conference
(WWW10), Hong Kong, 2001

[LZ02] Langham, M.; Ziegeler, C.: Cocoon: Building XML Applications. New Riders, 2002

[OAM00] Ovsiannikov, I.A.; Arbib, M.; McNeill, T.: Annotation Technology. International

Journal of Human-Computer Studies. 50(4). 2000

[RMW95] Röscheisen, M.; Morgensen, C.; Winograd, T.: Interaction Design for Shared World-

Wide Web Annotations. In Proceedings of the CHI '95, Denver, Colorado, 1995

[WS99] Watters, C.; Shepherd, M.: Research Issues for Virtual Documents. Workshop on

Virtual Documents, Hypertext Functionality and the Web at WWW8, Toronto,
Canada, 1999

